Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs
- URL: http://arxiv.org/abs/2404.11014v1
- Date: Wed, 17 Apr 2024 02:46:18 GMT
- Title: Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs
- Authors: Kang Wang, Zhishu Shen, Zhen Lei, Tiehua Zhang,
- Abstract summary: Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow.
Traditional approaches often simplify road networks into standard graphs.
We propose a novel TSCS framework to realize intelligent traffic control.
- Score: 19.107744041461316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow. Traditional approaches often simplify road networks into standard graphs, which results in a failure to consider the dynamic nature of traffic data at neighboring intersections, thereby neglecting higher-order interconnections necessary for real-time control. To address this, we propose a novel TSCS framework to realize intelligent traffic control. This framework collaborates with multiple neighboring edge computing servers to collect traffic information across the road network. To elevate the efficiency of traffic signal control, we have crafted a multi-agent soft actor-critic (MA-SAC) reinforcement learning algorithm. Within this algorithm, individual agents are deployed at each intersection with a mandate to optimize traffic flow across the entire road network collectively. Furthermore, we introduce hypergraph learning into the critic network of MA-SAC to enable the spatio-temporal interactions from multiple intersections in the road network. This method fuses hypergraph and spatio-temporal graph structures to encode traffic data and capture the complex spatial and temporal correlations between multiple intersections. Our empirical evaluation, tested on varied datasets, demonstrates the superiority of our framework in minimizing average vehicle travel times and sustaining high-throughput performance. This work facilitates the development of more intelligent and reactive urban traffic management solutions.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Joint Optimization of Traffic Signal Control and Vehicle Routing in
Signalized Road Networks using Multi-Agent Deep Reinforcement Learning [19.024527400852968]
We propose a joint optimization approach for traffic signal control and vehicle routing in signalized road networks.
The objective is to enhance network performance by simultaneously controlling signal timings and route choices using Multi-Agent Deep Reinforcement Learning (MADRL)
Our work is the first to utilize MADRL in determining the optimal joint policy for signal control and vehicle routing.
arXiv Detail & Related papers (2023-10-16T22:10:47Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - A Novel Multi-Agent Deep RL Approach for Traffic Signal Control [13.927155702352131]
We propose a Friend-Deep Q-network (Friend-DQN) approach for multiple traffic signal control in urban networks.
In particular, the cooperation between multiple agents can reduce the state-action space and thus speed up the convergence.
arXiv Detail & Related papers (2023-06-05T08:20:37Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Traffic-Net: 3D Traffic Monitoring Using a Single Camera [1.1602089225841632]
We provide a practical platform for real-time traffic monitoring using a single CCTV traffic camera.
We adapt a custom YOLOv5 deep neural network model for vehicle/pedestrian detection and an enhanced SORT tracking algorithm.
We also develop a hierarchical traffic modelling solution based on short- and long-term temporal video data stream.
arXiv Detail & Related papers (2021-09-19T16:59:01Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
We propose a novel approach to optimize traffic flow at intersections in mixed traffic situations using deep reinforcement learning.
Our reinforcement learning agent learns a policy for a centralized controller to let connected autonomous vehicles at unsignalized intersections give up their right of way and yield to other vehicles to optimize traffic flow.
arXiv Detail & Related papers (2021-06-11T13:16:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
Scaling adaptive traffic-signal control involves dealing with state and action spaces.
We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks.
Our model can generalize to new road networks, traffic distributions, and traffic regimes.
arXiv Detail & Related papers (2020-03-06T17:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.