論文の概要: BLoad: Enhancing Neural Network Training with Efficient Sequential Data Handling
- arxiv url: http://arxiv.org/abs/2310.10879v2
- Date: Thu, 25 Apr 2024 18:06:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 18:07:56.521459
- Title: BLoad: Enhancing Neural Network Training with Efficient Sequential Data Handling
- Title(参考訳): BLoad: 効率的なシーケンスデータ処理によるニューラルネットワークトレーニングの強化
- Authors: Raphael Ruschel, A. S. M. Iftekhar, B. S. Manjunath, Suya You,
- Abstract要約: オーバヘッドを最小限に抑えながら、異なるサイズのシーケンスに対して効率的な分散データ並列トレーニングを可能にする新しいトレーニング手法を提案する。
このスキームを使用することで、単一のフレームを削除することなく、パディング量を100ドル以上削減することができ、結果として、トレーニング時間とリコールの両方で全体的なパフォーマンスが向上しました。
- 参考スコア(独自算出の注目度): 8.859850475075238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing complexity of modern deep neural network models and the expanding sizes of datasets necessitate the development of optimized and scalable training methods. In this white paper, we addressed the challenge of efficiently training neural network models using sequences of varying sizes. To address this challenge, we propose a novel training scheme that enables efficient distributed data-parallel training on sequences of different sizes with minimal overhead. By using this scheme we were able to reduce the padding amount by more than 100$x$ while not deleting a single frame, resulting in an overall increased performance on both training time and Recall in our experiments.
- Abstract(参考訳): 現代のディープニューラルネットワークモデルの複雑さの増大とデータセットのサイズ拡大は、最適化されたスケーラブルなトレーニング方法の開発を必要とする。
この白書では、様々な大きさのシーケンスを用いてニューラルネットワークモデルを効率的に訓練することの課題に対処する。
この課題に対処するために、最小限のオーバーヘッドで異なるサイズのシーケンスに対して効率的な分散データ並列トレーニングを可能にする新しいトレーニング手法を提案する。
このスキームを使用することで、単一のフレームを削除せずに、パディング量を100ドル以上削減することができ、その結果、実験におけるトレーニング時間とリコールの両方での全体的なパフォーマンスが向上しました。
関連論文リスト
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
別個のニューラルネットワーク(すなわち値ネットワーク)を用いた後学習におけるロジットレベルのモデリング変更を提案する。
このネットワークをデモを使って小さなベースモデルでトレーニングした後、推論中に他のトレーニング済みモデルとシームレスに統合することができる。
得られた値ネットワークは、パラメータサイズの異なる事前学習されたモデル間で広い転送性を有することを示す。
論文 参考訳(メタデータ) (2024-10-28T13:48:43Z) - Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPUメモリの制約は、そのような巨大なモデルをトレーニングする上で、注目すべきボトルネックになっている。
この研究は、モデルをGPU間で分割し、個々のセグメントをトレーニングするために合成中間ラベルを生成することを提唱する。
このアプローチは、モデル精度を維持しながらデータ通信を最小限に抑える、より効率的なトレーニングプロセスをもたらす。
論文 参考訳(メタデータ) (2024-03-17T13:06:29Z) - Fast-NTK: Parameter-Efficient Unlearning for Large-Scale Models [17.34908967455907]
マシン・アンラーニング'は、スクラッチから再トレーニングすることなく、不要なデータの選択的削除を提案する。
Fast-NTKはNTKベースの新しいアンラーニングアルゴリズムであり、計算複雑性を大幅に削減する。
論文 参考訳(メタデータ) (2023-12-22T18:55:45Z) - Minibatch training of neural network ensembles via trajectory sampling [0.0]
また,ニューラルネットアンサンブル(NNE)をトラジェクトリ法により高精度に学習するためにも,ミニバッチアプローチが有効であることを示す。
MNISTデータセット内の画像を分類するためにNNEを訓練することで、このアプローチを説明する。
論文 参考訳(メタデータ) (2023-06-23T11:12:33Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングのためのエネルギー効率の高いモデルである。
本研究では,学習効率を大幅に向上させつつ,高い性能を達成できる空間学習時間(SLTT)法を提案する。
BPTTと比較して, メモリコストとトレーニング時間は, それぞれ70%以上, 50%以上削減されている。
論文 参考訳(メタデータ) (2023-02-28T05:01:01Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Efficient Augmentation for Imbalanced Deep Learning [8.38844520504124]
本研究では、畳み込みニューラルネットワークの内部表現である不均衡画像データについて検討する。
モデルの特徴埋め込みとテストセットの一般化ギャップを測定し、マイノリティクラスではそのギャップが広いことを示す。
この洞察により、不均衡なデータのための効率的な3相CNNトレーニングフレームワークを設計できる。
論文 参考訳(メタデータ) (2022-07-13T09:43:17Z) - Learning in Feedback-driven Recurrent Spiking Neural Networks using
full-FORCE Training [4.124948554183487]
本稿では,トレーニング中にのみ第2のネットワークを導入するRSNNの教師付きトレーニング手順を提案する。
提案したトレーニング手順は、リカレント層とリードアウト層の両方のターゲットを生成することで構成される。
本研究では,8つの力学系をモデル化するためのフルFORCEトレーニング手法の性能向上とノイズ堅牢性を示す。
論文 参考訳(メタデータ) (2022-05-26T19:01:19Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
プログレッシブニューラルネットワーク学習は、ネットワークのトポロジを漸進的に構築し、トレーニングデータに基づいてパラメータを最適化するアルゴリズムのクラスである。
段階的なトレーニングステップ毎にトレーニングデータのサブセットを活用することで,このプロセスの高速化を提案する。
オブジェクト,シーン,顔の認識における実験結果から,提案手法が最適化手順を大幅に高速化することを示す。
論文 参考訳(メタデータ) (2020-02-17T18:57:33Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。