論文の概要: Context-Aware Meta-Learning
- arxiv url: http://arxiv.org/abs/2310.10971v2
- Date: Mon, 25 Mar 2024 23:14:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 00:51:06.006790
- Title: Context-Aware Meta-Learning
- Title(参考訳): コンテキスト認識型メタラーニング
- Authors: Christopher Fifty, Dennis Duan, Ronald G. Junkins, Ehsan Amid, Jure Leskovec, Christopher Re, Sebastian Thrun,
- Abstract要約: 本研究では,大規模言語モデルのエミュレートを行うメタ学習アルゴリズムを提案する。
我々のアプローチは、11のメタラーニングベンチマークのうち8つで最先端のアルゴリズムであるP>M>Fを上回り、一致します。
- 参考スコア(独自算出の注目度): 52.09326317432577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models like ChatGPT demonstrate a remarkable capacity to learn new concepts during inference without any fine-tuning. However, visual models trained to detect new objects during inference have been unable to replicate this ability, and instead either perform poorly or require meta-training and/or fine-tuning on similar objects. In this work, we propose a meta-learning algorithm that emulates Large Language Models by learning new visual concepts during inference without fine-tuning. Our approach leverages a frozen pre-trained feature extractor, and analogous to in-context learning, recasts visual meta-learning as sequence modeling over datapoints with known labels and a test datapoint with an unknown label. On 8 out of 11 meta-learning benchmarks, our approach -- without meta-training or fine-tuning -- exceeds or matches the state-of-the-art algorithm, P>M>F, which is meta-trained on these benchmarks. Our code is available at https://github.com/cfifty/CAML.
- Abstract(参考訳): ChatGPTのような大規模言語モデルは、微調整なしで推論中に新しい概念を学ぶ能力を示す。
しかし、推論中に新しいオブジェクトを検出するために訓練された視覚モデルは、この機能を複製することができない。
本研究では,大規模言語モデルをエミュレートするメタ学習アルゴリズムを提案する。
提案手法では,凍結した事前学習された特徴抽出器を利用して,未知のラベルを持つデータポイントと未知のラベルを持つテストデータポイントを用いたシーケンスモデリングとして,視覚メタラーニングを再キャストする。
11のメタラーニングベンチマークのうち8つでは、メタトレーニングや微調整なしのアプローチが、これらのベンチマークでメタトレーニングされた最先端アルゴリズムであるP>M>Fを超え、一致します。
私たちのコードはhttps://github.com/cfifty/CAML.comで利用可能です。
関連論文リスト
- Meta Learning to Bridge Vision and Language Models for Multimodal
Few-Shot Learning [38.37682598345653]
視覚モデルと言語モデルとのギャップを埋めるために,マルチモーダルなメタ学習手法を導入する。
我々は,凍結した大規模視覚と言語モデルを効率的にブリッジするためにメタラーナーとして機能するメタマッパーネットワークを定義する。
我々は,最近提案されたマルチモーダル・スショット・ベンチマークに対するアプローチを評価し,新しい視覚概念を単語に結合する速度を計測した。
論文 参考訳(メタデータ) (2023-02-28T17:46:18Z) - Multi-Modal Few-Shot Object Detection with Meta-Learning-Based
Cross-Modal Prompting [77.69172089359606]
本稿では,マルチモーダルな複数ショットオブジェクト検出(FSOD)について,少数ショット視覚例とクラスセマンティック情報の両方を用いて検討する。
我々のアプローチは、(メトリックベース)メタラーニングとプロンプトベースラーニングの高レベルな概念的類似性によって動機付けられている。
提案するマルチモーダルFSODモデルを,複数の複数ショットオブジェクト検出ベンチマークで総合的に評価し,有望な結果を得た。
論文 参考訳(メタデータ) (2022-04-16T16:45:06Z) - Does MAML Only Work via Feature Re-use? A Data Centric Perspective [19.556093984142418]
メタ学習型MAMLの表現機能に光を当てた経験的結果を提供する。
機能再使用の低さをもたらす合成ベンチマークのファミリを定義することが可能であることを示す。
メタラーニングを再考する上での課題は、数ショットの学習データセットとベンチマークの設計にあると推測する。
論文 参考訳(メタデータ) (2021-12-24T20:18:38Z) - A Closer Look at Few-Shot Video Classification: A New Baseline and
Benchmark [33.86872697028233]
本研究は,3つのコントリビューションを生かした映像分類の詳細な研究である。
まず,既存のメートル法を一貫した比較研究を行い,表現学習の限界を明らかにする。
第2に,新しいアクションクラスとImageNetオブジェクトクラスとの間には高い相関関係があることが判明した。
第3に,事前学習をせずに将来的な数ショットビデオ分類を容易にするため,より多くのベースデータを持つ新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2021-10-24T06:01:46Z) - MM-FSOD: Meta and metric integrated few-shot object detection [14.631208179789583]
メトリクス学習とメタラーニングを統合した効果的なオブジェクト検出フレームワーク(MM-FSOD)を提案する。
我々のモデルは、トレーニングサンプルにない新しいカテゴリを正確に認識できるクラスに依存しない検出モデルである。
論文 参考訳(メタデータ) (2020-12-30T14:02:52Z) - Rethinking Few-Shot Image Classification: a Good Embedding Is All You
Need? [72.00712736992618]
メタトレーニングセット上で教師付きあるいは自己教師型表現を学習する単純なベースラインが、最先端の数ショット学習方法より優れていることを示す。
追加の増量は自己蒸留によって達成できる。
我々は,この発見が,画像分類ベンチマークとメタ学習アルゴリズムの役割を再考する動機となっていると考えている。
論文 参考訳(メタデータ) (2020-03-25T17:58:42Z) - Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning [79.25478727351604]
評価基準に基づいて,分類済みモデル全体に対するメタラーニング(メタラーニング)を提案する。
我々は,この単純な手法が標準ベンチマークにおける最先端手法との競合性能を達成するのを観察する。
論文 参考訳(メタデータ) (2020-03-09T20:06:36Z) - Unraveling Meta-Learning: Understanding Feature Representations for
Few-Shot Tasks [55.66438591090072]
メタラーニングの基礎となる力学と、メタラーニングを用いて訓練されたモデルと古典的に訓練されたモデルの違いをよりよく理解する。
数ショット分類のための標準訓練ルーチンの性能を高める正則化器を開発した。
論文 参考訳(メタデータ) (2020-02-17T03:18:45Z) - Incremental Meta-Learning via Indirect Discriminant Alignment [118.61152684795178]
メタ学習のメタ学習段階において,段階的な学習の概念を発達させる。
我々のアプローチは、完全なメタトレーニングセットでモデルをトレーニングするのと比べて、テスト時に好適に機能する。
論文 参考訳(メタデータ) (2020-02-11T01:39:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。