論文の概要: MM-FSOD: Meta and metric integrated few-shot object detection
- arxiv url: http://arxiv.org/abs/2012.15159v1
- Date: Wed, 30 Dec 2020 14:02:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-18 06:04:13.854597
- Title: MM-FSOD: Meta and metric integrated few-shot object detection
- Title(参考訳): mm-fsod: メタとメトリックの統合したマイナショットオブジェクト検出
- Authors: Yuewen Li, Wenquan Feng, Shuchang Lyu, Qi Zhao, Xuliang Li
- Abstract要約: メトリクス学習とメタラーニングを統合した効果的なオブジェクト検出フレームワーク(MM-FSOD)を提案する。
我々のモデルは、トレーニングサンプルにない新しいカテゴリを正確に認識できるクラスに依存しない検出モデルである。
- 参考スコア(独自算出の注目度): 14.631208179789583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the object detection task, CNN (Convolutional neural networks) models
always need a large amount of annotated examples in the training process. To
reduce the dependency of expensive annotations, few-shot object detection has
become an increasing research focus. In this paper, we present an effective
object detection framework (MM-FSOD) that integrates metric learning and
meta-learning to tackle the few-shot object detection task. Our model is a
class-agnostic detection model that can accurately recognize new categories,
which are not appearing in training samples. Specifically, to fast learn the
features of new categories without a fine-tuning process, we propose a
meta-representation module (MR module) to learn intra-class mean prototypes. MR
module is trained with a meta-learning method to obtain the ability to
reconstruct high-level features. To further conduct similarity of features
between support prototype with query RoIs features, we propose a Pearson metric
module (PR module) which serves as a classifier. Compared to the previous
commonly used metric method, cosine distance metric. PR module enables the
model to align features into discriminative embedding space. We conduct
extensive experiments on benchmark datasets FSOD, MS COCO, and PASCAL VOC to
demonstrate the feasibility and efficiency of our model. Comparing with the
previous method, MM-FSOD achieves state-of-the-art (SOTA) results.
- Abstract(参考訳): オブジェクト検出タスクでは、cnn(convolutional neural networks)モデルはトレーニングプロセスにおいて、常に大量の注釈付き例を必要とします。
高価なアノテーションの依存性を減らすために、少数のオブジェクト検出が研究の焦点となっている。
本稿では,メタラーニングとメトリック学習を統合した効果的なオブジェクト検出フレームワーク(MM-FSOD)を提案する。
我々のモデルは、トレーニングサンプルにない新しいカテゴリを正確に認識できるクラスに依存しない検出モデルである。
具体的には,クラス内平均プロトタイプを学習するためのメタ表現モジュール(MRモジュール)を提案する。
MRモジュールは、高度な特徴を再構築する能力を得るためにメタラーニング法で訓練される。
クエリロア機能を持つサポートプロトタイプ間の特徴の類似性をさらに高めるために,分類器として機能するピアソン計量モジュール(prモジュール)を提案する。
これまでの一般的な計量法と比較すると、コサイン距離メートル法である。
prモジュールは、モデルを識別的な埋め込み空間にアライメント可能にする。
ベンチマークデータセット FSOD, MS COCO, PASCAL VOC に関する広範な実験を行い, 本モデルの有効性と有効性を示す。
従来の手法と比較して、MM-FSODは最先端(SOTA)結果が得られる。
関連論文リスト
- MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
ファンデーションモデルは、様々な画像解釈タスクを強化することで、リモートセンシング(RS)のランドスケープを再構築した。
事前訓練されたモデルを下流のタスクに転送することは、イメージ分類やオブジェクト識別タスクとして事前訓練の定式化によるタスクの相違に遭遇する可能性がある。
SAMRSデータセット上で、セマンティックセグメンテーション、インスタンスセグメンテーション、回転オブジェクト検出を含むマルチタスクによる事前トレーニングを行う。
我々のモデルは、シーン分類、水平・回転物体検出、セマンティックセグメンテーション、変化検出など、様々なRS下流タスクに基づいて微調整される。
論文 参考訳(メタデータ) (2024-03-20T09:17:22Z) - Fine-Grained Prototypes Distillation for Few-Shot Object Detection [8.795211323408513]
Few-shot Object Detection (FSOD) は、新しい物体検出のためのジェネリック検出器を、少数の訓練例で拡張することを目的としている。
一般に、メタラーニングに基づく手法は、新しいサンプルをクラスプロトタイプにエンコードするために追加のサポートブランチを使用する。
より堅牢な新しいオブジェクト検出のために、特徴ある局所的コンテキストをキャプチャするためには、新しい方法が必要である。
論文 参考訳(メタデータ) (2024-01-15T12:12:48Z) - Context-Aware Meta-Learning [52.09326317432577]
本研究では,大規模言語モデルのエミュレートを行うメタ学習アルゴリズムを提案する。
我々のアプローチは、11のメタラーニングベンチマークのうち8つで最先端のアルゴリズムであるP>M>Fを上回り、一致します。
論文 参考訳(メタデータ) (2023-10-17T03:35:27Z) - Meta-training with Demonstration Retrieval for Efficient Few-shot
Learning [11.723856248352007]
大規模な言語モデルは、数ショットのNLPタスクで印象的な結果を示す。
これらのモデルはメモリと計算集約である。
本稿では,実演検索によるメタトレーニングを提案する。
論文 参考訳(メタデータ) (2023-06-30T20:16:22Z) - Multi-Modal Few-Shot Object Detection with Meta-Learning-Based
Cross-Modal Prompting [77.69172089359606]
本稿では,マルチモーダルな複数ショットオブジェクト検出(FSOD)について,少数ショット視覚例とクラスセマンティック情報の両方を用いて検討する。
我々のアプローチは、(メトリックベース)メタラーニングとプロンプトベースラーニングの高レベルな概念的類似性によって動機付けられている。
提案するマルチモーダルFSODモデルを,複数の複数ショットオブジェクト検出ベンチマークで総合的に評価し,有望な結果を得た。
論文 参考訳(メタデータ) (2022-04-16T16:45:06Z) - Decomposed Meta-Learning for Few-Shot Named Entity Recognition [32.515795881027074]
NER (Few-shot named entity recognition) システムは、いくつかのラベル付き例に基づいて、新しい名前付きエンティティを認識することを目的としている。
本稿ではメタラーニングを用いた数発のスパン検出と数発のエンティティタイピングに取り組むメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-04-12T12:46:23Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
複数インスタンス学習(DS-MIL)と融合した発見・選択手法を提案する。
我々の提案するDS-MILアプローチは,最先端の性能を報告しながら,ベースラインを一貫して改善することができる。
論文 参考訳(メタデータ) (2021-10-18T07:06:57Z) - Dynamic Relevance Learning for Few-Shot Object Detection [6.550840743803705]
動的グラフ畳み込みネットワーク(GCN)を構築するために,すべてのサポート画像とクエリ画像上の関心領域(RoI)の関係を利用した動的関連学習モデルを提案する。
提案モデルでは,より一般化された特徴の学習の有効性を示す総合的な性能が得られた。
論文 参考訳(メタデータ) (2021-08-04T18:29:42Z) - Overcoming Classifier Imbalance for Long-tail Object Detection with
Balanced Group Softmax [88.11979569564427]
本報告では, 長期分布前における最先端モデルの過小評価に関する最初の体系的解析を行う。
本稿では,グループワイドトレーニングを通じて検出フレームワーク内の分類器のバランスをとるための,新しいバランス付きグループソフトマックス(BAGS)モジュールを提案する。
非常に最近の長尾大語彙オブジェクト認識ベンチマークLVISの大規模な実験により,提案したBAGSは検出器の性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2020-06-18T10:24:26Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。