Spatially-resolved hyperlocal weather prediction and anomaly detection
using IoT sensor networks and machine learning techniques
- URL: http://arxiv.org/abs/2310.11001v1
- Date: Tue, 17 Oct 2023 05:04:53 GMT
- Title: Spatially-resolved hyperlocal weather prediction and anomaly detection
using IoT sensor networks and machine learning techniques
- Authors: Anita B. Agarwal, Rohit Rajesh, Nitin Arul
- Abstract summary: We propose a novel approach that combines hyperlocal weather prediction and anomaly detection using IoT sensor networks and machine learning techniques.
Our system is able to enhance the spatial resolution of predictions and effectively detect anomalies in real-time.
Our findings indicate that this system has the potential to enhance decision-making.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and timely hyperlocal weather predictions are essential for various
applications, ranging from agriculture to disaster management. In this paper,
we propose a novel approach that combines hyperlocal weather prediction and
anomaly detection using IoT sensor networks and advanced machine learning
techniques. Our approach leverages data from multiple spatially-distributed yet
relatively close locations and IoT sensors to create high-resolution weather
models capable of predicting short-term, localized weather conditions such as
temperature, pressure, and humidity. By monitoring changes in weather
parameters across these locations, our system is able to enhance the spatial
resolution of predictions and effectively detect anomalies in real-time.
Additionally, our system employs unsupervised learning algorithms to identify
unusual weather patterns, providing timely alerts. Our findings indicate that
this system has the potential to enhance decision-making.
Related papers
- Multi-modal graph neural networks for localized off-grid weather forecasting [3.890177521606208]
Weather forecast products from machine learning or numerical weather models are currently generated on a global regular grid.
In this work, we train a heterogeneous graph neural network (GNN) end-to-end to downscale gridded forecasts to off-grid locations of interest.
Our approach demonstrates how the gap between global large-scale weather models and locally accurate predictions can be bridged to inform localized decision-making.
arXiv Detail & Related papers (2024-10-16T18:25:43Z) - Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
Precipitation nowcasting is crucial across various industries and plays a significant role in mitigating and adapting to climate change.
We introduce an efficient deep learning model for precipitation nowcasting, capable of predicting rainfall up to 8 hours in advance with greater accuracy than existing operational models.
arXiv Detail & Related papers (2024-10-11T09:09:07Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices.
To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies.
This can hamper dramatically subsequent decision-making, such as forecasting.
arXiv Detail & Related papers (2022-06-15T19:46:59Z) - Optimization of IoT-Enabled Physical Location Monitoring Using DT and
VAR [0.0]
The study reveals that decision tree (DT) and random forest give reasonably similar macro average f1-scores to predict a person using sensor data.
DT is the most reliable predictive model for the cloud datasets of three different physical locations to predict a person using timestamp with an accuracy of 83.99%, 88.92%, and 80.97%.
arXiv Detail & Related papers (2022-04-10T11:39:46Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Deep Learning for Rain Fade Prediction in Satellite Communications [6.619650459583444]
Line of sight satellite systems, unmanned aerial vehicles, high-altitude platforms, and microwave links are extremely susceptible to rain.
Rain fade forecasting for these systems is critical because it allows the system to switch between ground gateways proactively before a rain fade event to maintain seamless service.
Deep learning architecture is proposed that forecasts future rain fade using satellite and radar imagery data as well as link power measurements.
arXiv Detail & Related papers (2021-10-02T00:43:02Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.