Deep Learning for Rain Fade Prediction in Satellite Communications
- URL: http://arxiv.org/abs/2110.00695v1
- Date: Sat, 2 Oct 2021 00:43:02 GMT
- Title: Deep Learning for Rain Fade Prediction in Satellite Communications
- Authors: Aidin Ferdowsi, David Whitefield
- Abstract summary: Line of sight satellite systems, unmanned aerial vehicles, high-altitude platforms, and microwave links are extremely susceptible to rain.
Rain fade forecasting for these systems is critical because it allows the system to switch between ground gateways proactively before a rain fade event to maintain seamless service.
Deep learning architecture is proposed that forecasts future rain fade using satellite and radar imagery data as well as link power measurements.
- Score: 6.619650459583444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Line of sight satellite systems, unmanned aerial vehicles, high-altitude
platforms, and microwave links that operate on frequency bands such as Ka-band
or higher are extremely susceptible to rain. Thus, rain fade forecasting for
these systems is critical because it allows the system to switch between ground
gateways proactively before a rain fade event to maintain seamless service.
Although empirical, statistical, and fade slope models can predict rain fade to
some extent, they typically require statistical measurements of rain
characteristics in a given area and cannot be generalized to a large scale
system. Furthermore, such models typically predict near-future rain fade events
but are incapable of forecasting far into the future, making proactive resource
management more difficult. In this paper, a deep learning (DL)-based
architecture is proposed that forecasts future rain fade using satellite and
radar imagery data as well as link power measurements. Furthermore, the data
preprocessing and architectural design have been thoroughly explained and
multiple experiments have been conducted. Experiments show that the proposed DL
architecture outperforms current state-of-the-art machine learning-based
algorithms in rain fade forecasting in the near and long term. Moreover, the
results indicate that radar data with weather condition information is more
effective for short-term prediction, while satellite data with cloud movement
information is more effective for long-term predictions.
Related papers
- ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Transformer-based nowcasting of radar composites from satellite images
for severe weather [45.0983299269404]
We present a Transformer-based model for nowcasting ground-based radar image sequences using satellite data up to two hours lead time.
Trained on a dataset reflecting severe weather conditions, the model predicts radar fields occurring under different weather phenomena.
The model can support precipitation nowcasting across large domains without an explicit need for radar towers.
arXiv Detail & Related papers (2023-10-30T13:17:38Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
We show that a 3D convolutional neural network using a single frame of meteorology fields is capable of predicting the precipitation spatial distribution.
The network is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States.
arXiv Detail & Related papers (2021-10-05T06:37:24Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
This paper proposes a new semi-supervised video deraining method, in which a dynamic rain generator is employed to fit the rain layer.
Specifically, such dynamic generator consists of one emission model and one transition model to simultaneously encode the spatially physical structure and temporally continuous changes of rain streaks.
Various prior formats are designed for the labeled synthetic and unlabeled real data, so as to fully exploit the common knowledge underlying them.
arXiv Detail & Related papers (2021-03-14T14:28:57Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
We propose a new deep learning model for precipitation nowcasting that includes both the discrimination and attention techniques.
The model is examined on a newly-built benchmark dataset that contains both radar data and actual rain data.
arXiv Detail & Related papers (2021-02-16T14:22:54Z) - Fusion of rain radar images and wind forecasts in a deep learning model
applied to rain nowcasting [0.0]
We train a deep learning model on a fusion of rainfall radar images and wind velocity produced by a weather forecast model.
Our network outperforms by 8% the F1-score calculated for the optical flow on moderate and higher rain events for forecasts at a horizon time of 30 min.
Merging rain and wind data has also proven to stabilize the training process and enabled significant improvement especially on the difficult-to-predict high precipitation rainfalls.
arXiv Detail & Related papers (2020-12-09T12:50:06Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.