Multi-modal graph neural networks for localized off-grid weather forecasting
- URL: http://arxiv.org/abs/2410.12938v1
- Date: Wed, 16 Oct 2024 18:25:43 GMT
- Title: Multi-modal graph neural networks for localized off-grid weather forecasting
- Authors: Qidong Yang, Jonathan Giezendanner, Daniel Salles Civitarese, Johannes Jakubik, Eric Schmitt, Anirban Chandra, Jeremy Vila, Detlef Hohl, Chris Hill, Campbell Watson, Sherrie Wang,
- Abstract summary: Weather forecast products from machine learning or numerical weather models are currently generated on a global regular grid.
In this work, we train a heterogeneous graph neural network (GNN) end-to-end to downscale gridded forecasts to off-grid locations of interest.
Our approach demonstrates how the gap between global large-scale weather models and locally accurate predictions can be bridged to inform localized decision-making.
- Score: 3.890177521606208
- License:
- Abstract: Urgent applications like wildfire management and renewable energy generation require precise, localized weather forecasts near the Earth's surface. However, weather forecast products from machine learning or numerical weather models are currently generated on a global regular grid, on which a naive interpolation cannot accurately reflect fine-grained weather patterns close to the ground. In this work, we train a heterogeneous graph neural network (GNN) end-to-end to downscale gridded forecasts to off-grid locations of interest. This multi-modal GNN takes advantage of local historical weather observations (e.g., wind, temperature) to correct the gridded weather forecast at different lead times towards locally accurate forecasts. Each data modality is modeled as a different type of node in the graph. Using message passing, the node at the prediction location aggregates information from its heterogeneous neighbor nodes. Experiments using weather stations across the Northeastern United States show that our model outperforms a range of data-driven and non-data-driven off-grid forecasting methods. Our approach demonstrates how the gap between global large-scale weather models and locally accurate predictions can be bridged to inform localized decision-making.
Related papers
- Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Aardvark weather: end-to-end data-driven weather forecasting [30.219727555662267]
Aardvark Weather is an end-to-end data-driven weather prediction system.
It ingests raw observations and outputs global gridded forecasts and local station forecasts.
It can be optimised end-to-end to maximise performance over quantities of interest.
arXiv Detail & Related papers (2024-03-30T16:41:24Z) - Precipitation nowcasting with generative diffusion models [0.0]
We study the efficacy of diffusion models in handling the task of precipitation nowcasting.
Our work is conducted in comparison to the performance of well-established U-Net models.
arXiv Detail & Related papers (2023-08-13T09:51:16Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - DL-Corrector-Remapper: A grid-free bias-correction deep learning
methodology for data-driven high-resolution global weather forecasting [11.334341754942917]
We develop a methodology to correct, remap, and fine-tune gridded uniform forecasts of FourCastNet (FCN)
This is akin to bias correction and post-processing of numerical weather prediction (NWP)
We call this network the Deep-Learning-Corrector-Remapper (DLCR)
arXiv Detail & Related papers (2022-10-21T23:04:44Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - HiSTGNN: Hierarchical Spatio-temporal Graph Neural Networks for Weather
Forecasting [13.317147032467306]
We propose a novel Graph Hierarchical Spatio-Temporal Neural Network (HiSTGNN) to model cross-regional-temporal correlations among meteorological variables in multiple stations.
Experimental results on three real-world meteorological datasets demonstrate the superior performance of HiSTGNN beyond 7 baselines.
It reduces the errors by 4.2% to 11.6% especially compared to state-of-the-art weather forecasting method.
arXiv Detail & Related papers (2022-01-22T17:30:46Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
We train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and global ICON simulations.
Globally trained NNs can reproduce sub-grid scale cloud cover of the regional simulation.
We identify an overemphasis on specific humidity and cloud ice as the reason why our column-based NN cannot perfectly generalize from the global to the regional coarse-grained data.
arXiv Detail & Related papers (2021-12-21T16:10:45Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network (CNN)
New developments in this framework include an offline volume-conservative mapping to a cubed-sphere grid.
Our model is able to learn to forecast complex surface temperature patterns from few input atmospheric state variables.
arXiv Detail & Related papers (2020-03-15T19:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.