論文の概要: Core Building Blocks: Next Gen Geo Spatial GPT Application
- arxiv url: http://arxiv.org/abs/2310.11029v2
- Date: Wed, 18 Oct 2023 10:15:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-19 12:29:18.214617
- Title: Core Building Blocks: Next Gen Geo Spatial GPT Application
- Title(参考訳): コアビルディングブロック:次世代地理空間GPTアプリケーション
- Authors: Ashley Fernandez, Swaraj Dube
- Abstract要約: 本稿では,自然言語理解と空間データ分析のギャップを埋めることを目的としたMapGPTを紹介する。
MapGPTは、ロケーションベースのクエリに対するより正確でコンテキスト対応の応答を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes MapGPT which is a novel approach that integrates the
capabilities of language models, specifically large language models (LLMs),
with spatial data processing techniques. This paper introduces MapGPT, which
aims to bridge the gap between natural language understanding and spatial data
analysis by highlighting the relevant core building blocks. By combining the
strengths of LLMs and geospatial analysis, MapGPT enables more accurate and
contextually aware responses to location-based queries. The proposed
methodology highlights building LLMs on spatial and textual data, utilizing
tokenization and vector representations specific to spatial information. The
paper also explores the challenges associated with generating spatial vector
representations. Furthermore, the study discusses the potential of
computational capabilities within MapGPT, allowing users to perform geospatial
computations and obtain visualized outputs. Overall, this research paper
presents the building blocks and methodology of MapGPT, highlighting its
potential to enhance spatial data understanding and generation in natural
language processing applications.
- Abstract(参考訳): 本稿では,言語モデル,特に大規模言語モデル(LLM)の機能と空間データ処理技術を統合する新しい手法であるMapGPTを提案する。
本稿では,自然言語理解と空間データ分析のギャップを埋めることを目的としたMapGPTを提案する。
LLMと地理空間解析の長所を組み合わせることで、MapGPTは位置ベースのクエリに対するより正確で文脈的に認識された応答を可能にする。
提案手法は,空間情報に特有のトークン化とベクトル表現を活用し,空間データおよびテキストデータに基づくllmの構築を強調する。
また,空間ベクトル表現の生成に関わる課題についても検討する。
さらに,MapGPTにおける計算能力の可能性について考察し,地理空間計算を行い,可視化された出力を得る。
本研究は,MapGPTの構成要素と手法を概説し,自然言語処理アプリケーションにおける空間的データ理解と生成の促進の可能性を明らかにする。
関連論文リスト
- Into the Unknown: Generating Geospatial Descriptions for New Environments [18.736071151303726]
レンデブー課題は、同心空間関係の推論を必要とする。
座標と組み合わせたオープンソース記述(例えばウィキペディア)を使用することで、トレーニングデータを提供するが、空間指向の限られたテキストに悩まされる。
新しい環境のための高品質な合成データを生成するための大規模拡張手法を提案する。
論文 参考訳(メタデータ) (2024-06-28T14:56:21Z) - GeoDecoder: Empowering Multimodal Map Understanding [3.164495478670176]
GeoDecoderは、地図内の地理空間情報を処理するために設計された、専用のマルチモーダルモデルである。
GeoDecoderはBeitGPTアーキテクチャに基づいて構築されており、画像やテキスト処理の専門的なモジュールが組み込まれている。
論文 参考訳(メタデータ) (2024-01-26T02:39:40Z) - Towards Natural Language-Guided Drones: GeoText-1652 Benchmark with Spatial Relation Matching [60.645802236700035]
自然言語コマンドを通じてドローンをナビゲートすることは、アクセス可能なマルチモーダルデータセットが不足しているため、依然として難しい。
我々は新しい自然言語誘導ジオローカライゼーションベンチマークGeoText-1652を紹介する。
このデータセットは、インタラクティブなヒューマンコンピュータプロセスを通じて体系的に構築される。
論文 参考訳(メタデータ) (2023-11-21T17:52:30Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
大規模言語モデルから地理空間的知識を効果的に抽出する新しい手法であるGeoLLMを提案する。
我々は、人口密度や経済生活の計測など、国際社会への関心の中心となる複数の課題にまたがるアプローチの有用性を実証する。
実験の結果, LLMは試料効率が高く, 地理空間情報に富み, 世界中のロバストであることがわかった。
論文 参考訳(メタデータ) (2023-10-10T00:03:23Z) - Are Large Language Models Geospatially Knowledgeable? [21.401931052512595]
本稿では,Large Language Models (LLM) で符号化された地理空間的知識,認識,推論能力の程度について検討する。
自己回帰言語モデルに焦点をあて, (i) 地理座標系におけるLLMの探索と地理空間知識の評価, (ii) 地理空間的および非地理空間的前置法を用いて地理空間的意識を測定する, (iii) 多次元スケーリング(MDS) 実験を用いて, モデルの地理空間的推論能力を評価する, 実験手法を考案した。
論文 参考訳(メタデータ) (2023-10-09T17:20:11Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
中国の地理的再ランクタスクは、検索された候補者の中で最も関連性の高い住所を見つけることを目的としている。
そこで我々は,中国語の地理的意味論をより効果的に統合する,革新的なフレームワークであるGeo-Encoderを提案する。
論文 参考訳(メタデータ) (2023-09-04T13:44:50Z) - GeoGPT: Understanding and Processing Geospatial Tasks through An
Autonomous GPT [6.618846295332767]
GISの意思決定者は、空間的タスクを解決するために、一連の空間的アルゴリズムと演算を組み合わせる必要がある。
我々は,地理空間データ収集,処理,解析を自律的に行うことのできるGeoGPTと呼ばれる新しいフレームワークを開発した。
論文 参考訳(メタデータ) (2023-07-16T03:03:59Z) - Evaluating the Effectiveness of Large Language Models in Representing
Textual Descriptions of Geometry and Spatial Relations [2.8935588665357086]
本研究では,大規模言語モデル(LLM)の空間的関係の表現能力を評価することに焦点を当てた。
我々は GPT-2 や BERT などの LLM を用いて、よく知られたジオメトリのテキスト (WKT) フォーマットを符号化し、それらの埋め込みを分類器や回帰器に入力する。
実験では、LLMが生成した埋め込みは幾何型を保存し、いくつかの空間的関係(精度は73%まで)を捉えることができるが、数値を推定し、空間的関連オブジェクトを検索する際の課題が残っている。
論文 参考訳(メタデータ) (2023-07-05T03:50:08Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
我々はGeoGLUEと呼ばれるGeoGraphic Language Understanding Evaluationベンチマークを提案する。
オープンソースの地理資源からデータを収集し、6つの自然言語理解タスクを導入する。
我々は,GeoGLUEベンチマークの有効性と意義を示す一般ベースラインの評価実験と解析を行った。
論文 参考訳(メタデータ) (2023-05-11T03:21:56Z) - MGeo: Multi-Modal Geographic Pre-Training Method [49.78466122982627]
マルチモーダルジオグラフィック言語モデル(MGeo)を提案する。
MGeoはGCを新しいモダリティとして表現し、正確なクエリ-POIマッチングのためのマルチモーダル相関を完全に抽出することができる。
提案するマルチモーダル事前学習法は,汎用PTMのクエリ-POIマッチング能力を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-01-11T03:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。