論文の概要: Map2Text: New Content Generation from Low-Dimensional Visualizations
- arxiv url: http://arxiv.org/abs/2412.18673v1
- Date: Tue, 24 Dec 2024 20:16:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:25:22.558969
- Title: Map2Text: New Content Generation from Low-Dimensional Visualizations
- Title(参考訳): Map2Text: 低次元可視化による新しいコンテンツ生成
- Authors: Xingjian Zhang, Ziyang Xiong, Shixuan Liu, Yutong Xie, Tolga Ergen, Dongsub Shim, Hua Xu, Honglak Lee, Qiaozhu Me,
- Abstract要約: 低次元の可視化における空間座標を新しい、一貫性のある、正確に整列されたテキストコンテンツに変換する新しいタスクであるMap2Textを紹介する。
これによってユーザは、これらの空間的レイアウトに埋め込まれた未発見情報を対話的に、直感的に探索し、ナビゲートすることができる。
- 参考スコア(独自算出の注目度): 60.02149343347818
- License:
- Abstract: Low-dimensional visualizations, or "projection maps" of datasets, are widely used across scientific research and creative industries as effective tools for interpreting large-scale and complex information. These visualizations not only support understanding existing knowledge spaces but are often used implicitly to guide exploration into unknown areas. While powerful methods like TSNE or UMAP can create such visual maps, there is currently no systematic way to leverage them for generating new content. To bridge this gap, we introduce Map2Text, a novel task that translates spatial coordinates within low-dimensional visualizations into new, coherent, and accurately aligned textual content. This allows users to explore and navigate undiscovered information embedded in these spatial layouts interactively and intuitively. To evaluate the performance of Map2Text methods, we propose Atometric, an evaluation metric that provides a granular assessment of logical coherence and alignment of the atomic statements in the generated texts. Experiments conducted across various datasets demonstrate the versatility of Map2Text in generating scientific research hypotheses, crafting synthetic personas, and devising strategies for testing large language models. Our findings highlight the potential of Map2Text to unlock new pathways for interacting with and navigating large-scale textual datasets, offering a novel framework for spatially guided content generation and discovery.
- Abstract(参考訳): データセットの低次元可視化(または「投影マップ」)は、大規模で複雑な情報を解釈するための効果的なツールとして、科学研究や創造産業で広く利用されている。
これらの視覚化は、既存の知識空間の理解を支援するだけでなく、未知の領域への探索をガイドするために暗黙的に使われることが多い。
TSNEやUMAPのような強力な手法はこのようなビジュアルマップを作成できるが、現在、新しいコンテンツを生成するためにそれらを活用するための体系的な方法はない。
このギャップを埋めるために、低次元の可視化における空間座標を新しい、一貫性のある、正確に整列されたテキストコンテンツに変換する新しいタスクであるMap2Textを紹介する。
これによってユーザは、これらの空間的レイアウトに埋め込まれた未発見情報を対話的に、直感的に探索し、ナビゲートすることができる。
本研究では,Map2Text法の性能を評価するために,生成したテキスト中の原子文の論理的コヒーレンスとアライメントを詳細に評価する評価指標であるAtometricを提案する。
さまざまなデータセットで行われた実験は、科学研究仮説の生成、合成ペルソナの作成、大規模言語モデルをテストするための戦略開発において、Map2Textの汎用性を実証している。
われわれはMap2Textが大規模テキストデータセットと対話し、ナビゲートするための新しい経路を開放する可能性を強調し、空間的にガイドされたコンテンツ生成と発見のための新しいフレームワークを提供する。
関連論文リスト
- HPix: Generating Vector Maps from Satellite Images [0.0]
衛星画像からベクトルタイルマップを生成するためにGAN(Generative Adversarial Networks)を改良したHPixと呼ばれる新しい手法を提案する。
経験的評価を通じて,提案手法は高精度かつ視覚的に表現可能なベクトルタイルマップを作成する上での有効性を示す。
さらに、道路交差点のマッピングや、その面積に基づいたフットプリントクラスタの構築など、我々の研究の応用を拡大する。
論文 参考訳(メタデータ) (2024-07-18T16:54:02Z) - Into the Unknown: Generating Geospatial Descriptions for New Environments [18.736071151303726]
レンデブー課題は、同心空間関係の推論を必要とする。
座標と組み合わせたオープンソース記述(例えばウィキペディア)を使用することで、トレーニングデータを提供するが、空間指向の限られたテキストに悩まされる。
新しい環境のための高品質な合成データを生成するための大規模拡張手法を提案する。
論文 参考訳(メタデータ) (2024-06-28T14:56:21Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridgeは、コンテキストテキスト情報を活用することで、ローカルおよびグローバルな視点をブリッジするフレームワークである。
提案手法は最先端性能を実現し,グラフ対応トークン削減モジュールは効率を大幅に向上し,スケーラビリティの問題を解消する。
論文 参考訳(メタデータ) (2024-06-18T13:35:25Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
本研究では,屋内環境における埋め込みナビゲーションによる意味領域マッピング手法を提案する。
地域識別を実現するために,視覚言語モデルを用いて地図作成のためのシーン情報を提供する。
グローバルなフレームにエゴセントリックなシーン理解を投影することにより、提案手法は各場所の可能な領域ラベル上の分布としてのセマンティックマップを生成する。
論文 参考訳(メタデータ) (2024-03-11T18:09:50Z) - Towards Improving Document Understanding: An Exploration on
Text-Grounding via MLLMs [96.54224331778195]
本稿では,画像中のテキストの空間的位置を識別し,MLLMを強化したテキストグラウンド文書理解モデルTGDocを提案する。
我々は,テキスト検出,認識,スポッティングなどの命令チューニングタスクを定式化し,視覚エンコーダと大言語モデルとの密接なアライメントを容易にする。
提案手法は,複数のテキストリッチベンチマークにまたがる最先端性能を実現し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-11-22T06:46:37Z) - Open-Vocabulary Camouflaged Object Segmentation [66.94945066779988]
OVCOS(Open-vocabulary camouflaged Object segmentation)を導入した。
我々は11,483個の手選択画像とそれに対応するオブジェクトクラスを含む大規模複合シーンデータセット(textbfOVCamo)を構築した。
クラスセマンティック知識の指導とエッジ情報と深度情報からの視覚構造的手がかりの補足を統合することにより、提案手法は効率よくカモフラージュされたオブジェクトを捕捉できる。
論文 参考訳(メタデータ) (2023-11-19T06:00:39Z) - Core Building Blocks: Next Gen Geo Spatial GPT Application [0.0]
本稿では,自然言語理解と空間データ分析のギャップを埋めることを目的としたMapGPTを紹介する。
MapGPTは、ロケーションベースのクエリに対するより正確でコンテキスト対応の応答を可能にする。
論文 参考訳(メタデータ) (2023-10-17T06:59:31Z) - Advancing Visual Grounding with Scene Knowledge: Benchmark and Method [74.72663425217522]
ビジュアルグラウンドディング(VG)は、視覚と言語の間にきめ細かいアライメントを確立することを目的としている。
既存のVGデータセットの多くは、単純な記述テキストを使って構築されている。
我々は、アンダーラインScene underline-guided underlineVisual underlineGroundingの新たなベンチマークを提案する。
論文 参考訳(メタデータ) (2023-07-21T13:06:02Z) - Let the Chart Spark: Embedding Semantic Context into Chart with
Text-to-Image Generative Model [7.587729429265939]
画像視覚化は、データとセマンティックコンテキストを視覚表現にシームレスに統合する。
本稿では,テキストから画像への生成モデルに基づく意味コンテキストをグラフに組み込む新しいシステムであるChartSparkを提案する。
本研究では,テキストアナライザ,編集モジュール,評価モジュールを統合したインタラクティブなビジュアルインタフェースを開発し,画像視覚化の生成,修正,評価を行う。
論文 参考訳(メタデータ) (2023-04-28T05:18:30Z) - Mapping Research Trajectories [0.0]
本稿では, あらゆる科学分野に適用可能な, 研究軌道のエンハンマッピングに関する原則的アプローチを提案する。
われわれの視覚化は、時間とともに実体の研究トピックを、直接的に相互に表現している。
実践的な実証アプリケーションでは、機械学習による出版コーパスに対する提案されたアプローチを例示する。
論文 参考訳(メタデータ) (2022-04-25T13:32:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。