論文の概要: Understanding Contrastive Learning via Distributionally Robust
Optimization
- arxiv url: http://arxiv.org/abs/2310.11048v1
- Date: Tue, 17 Oct 2023 07:32:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 17:13:41.815944
- Title: Understanding Contrastive Learning via Distributionally Robust
Optimization
- Title(参考訳): 分散ロバスト最適化によるコントラスト学習の理解
- Authors: Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Xiang Wang, Xiangnan
He
- Abstract要約: 本研究は,類似のセマンティクス(ラベルなど)を負のサンプルとして含むサンプリングバイアスに対するコントラッシブラーニング(CL)の固有の耐性を明らかにする。
本研究は,分散ロバスト最適化 (DRO) のレンズを用いてCLを解析することにより,この研究ギャップを橋渡しし,いくつかの重要な知見を得る。
また, CLの過保守性や異常値に対する感受性などの潜在的な欠点を同定し, これらの問題を緩和するための新しいAdjusted InfoNCE損失(ADNCE)を導入する。
- 参考スコア(独自算出の注目度): 29.202594242468678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study reveals the inherent tolerance of contrastive learning (CL)
towards sampling bias, wherein negative samples may encompass similar semantics
(\eg labels). However, existing theories fall short in providing explanations
for this phenomenon. We bridge this research gap by analyzing CL through the
lens of distributionally robust optimization (DRO), yielding several key
insights: (1) CL essentially conducts DRO over the negative sampling
distribution, thus enabling robust performance across a variety of potential
distributions and demonstrating robustness to sampling bias; (2) The design of
the temperature $\tau$ is not merely heuristic but acts as a Lagrange
Coefficient, regulating the size of the potential distribution set; (3) A
theoretical connection is established between DRO and mutual information, thus
presenting fresh evidence for ``InfoNCE as an estimate of MI'' and a new
estimation approach for $\phi$-divergence-based generalized mutual information.
We also identify CL's potential shortcomings, including over-conservatism and
sensitivity to outliers, and introduce a novel Adjusted InfoNCE loss (ADNCE) to
mitigate these issues. It refines potential distribution, improving performance
and accelerating convergence. Extensive experiments on various domains (image,
sentence, and graphs) validate the effectiveness of the proposal. The code is
available at \url{https://github.com/junkangwu/ADNCE}.
- Abstract(参考訳): 本研究は,差分バイアスに対する比較学習(CL)の本質的寛容性を明らかにし,負のサンプルは類似のセマンティクス(エグラベル)を包含する可能性がある。
しかし、既存の説ではこの現象の説明が不足している。
We bridge this research gap by analyzing CL through the lens of distributionally robust optimization (DRO), yielding several key insights: (1) CL essentially conducts DRO over the negative sampling distribution, thus enabling robust performance across a variety of potential distributions and demonstrating robustness to sampling bias; (2) The design of the temperature $\tau$ is not merely heuristic but acts as a Lagrange Coefficient, regulating the size of the potential distribution set; (3) A theoretical connection is established between DRO and mutual information, thus presenting fresh evidence for ``InfoNCE as an estimate of MI'' and a new estimation approach for $\phi$-divergence-based generalized mutual information.
また, CLの過保守性や異常値に対する感受性などの潜在的な欠点を同定し, これらの問題を緩和するための新しいAdjusted InfoNCE損失(ADNCE)を導入する。
ポテンシャル分布を洗練し、性能を改善し、収束を加速する。
様々な領域(画像、文、グラフ)における広範囲な実験が提案の有効性を検証する。
コードは \url{https://github.com/junkangwu/adnce} で入手できる。
関連論文リスト
- A Semiparametric Approach to Causal Inference [2.092897805817524]
因果推論において、重要な問題は介入や治療の効果を定量化することである。
本稿では, 半パラメトリック密度比モデル(DRM)を用いて, 対物分布の特徴付けを行う。
我々のモデルは、対物分布に関する厳密なパラメトリック仮定を避けることで柔軟性を提供する。
論文 参考訳(メタデータ) (2024-11-01T18:03:38Z) - Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
CFGの背後にある理論を再検討し、組合せ係数の不適切な構成(すなわち、広く使われている和対1バージョン)が生成分布の期待シフトをもたらすことを厳密に確認する。
本稿では,誘導係数を緩和したReCFGを提案する。
このようにして、修正された係数は観測されたデータをトラバースすることで容易に事前計算でき、サンプリング速度はほとんど影響を受けない。
論文 参考訳(メタデータ) (2024-10-24T13:41:32Z) - Revisiting Essential and Nonessential Settings of Evidential Deep Learning [70.82728812001807]
Evidential Deep Learning (EDL) は不確実性推定の新しい手法である。
本報告では,EDLの簡易かつ効果的な拡張型であるRe-EDLを提案する。
論文 参考訳(メタデータ) (2024-10-01T04:27:07Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
本研究では、無限水平マルコフ決定過程の文脈における高信頼オフ政治評価について検討する。
目的は、未知の行動ポリシーから事前に収集されたオフラインデータのみを用いて、対象の政策値に対する信頼区間(CI)を確立することである。
提案アルゴリズムは, 非線形関数近似設定においても, サンプル効率, 誤差ローバスト, 既知収束性を示す。
論文 参考訳(メタデータ) (2023-09-23T06:35:44Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Achieving Efficiency in Black Box Simulation of Distribution Tails with
Self-structuring Importance Samplers [1.6114012813668934]
本稿では,線形プログラムや整数線形プログラム,ピースワイド線形・二次目的,ディープニューラルネットワークで指定された特徴マップなど,多種多様なツールでモデル化されたパフォーマンス指標の分布を推定する,新しいImportance Smpling(IS)方式を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:37:22Z) - Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees [49.91477656517431]
量子化に基づく解法は、フェデレートラーニング(FL)において広く採用されている。
上記のプロパティをすべて享受する既存のメソッドはありません。
本稿では,SIGNSGDに基づく直感的かつ理論的に簡易な手法を提案し,そのギャップを埋める。
論文 参考訳(メタデータ) (2020-02-25T15:12:15Z) - The Counterfactual $\chi$-GAN [20.42556178617068]
因果推論は、しばしば、治療の割り当てが結果から独立していることを要求する反ファクト的枠組みに依存する。
本研究は,CGAN(Counterfactual $chi$-GAN)と呼ばれるGAN(Generative Adversarial Network)に基づくモデルを提案する。
論文 参考訳(メタデータ) (2020-01-09T17:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。