Assessing the Causal Impact of Humanitarian Aid on Food Security
- URL: http://arxiv.org/abs/2310.11287v3
- Date: Wed, 22 May 2024 07:41:10 GMT
- Title: Assessing the Causal Impact of Humanitarian Aid on Food Security
- Authors: Jordi Cerdà-Bautista, José María Tárraga, Vasileios Sitokonstantinou, Gustau Camps-Valls,
- Abstract summary: This paper introduces a causal inference framework for the Horn of Africa.
It aims to assess the impact of cash-based interventions on food crises.
- Score: 4.934192277899036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the face of climate change-induced droughts, vulnerable regions encounter severe threats to food security, demanding urgent humanitarian assistance. This paper introduces a causal inference framework for the Horn of Africa, aiming to assess the impact of cash-based interventions on food crises. Our contributions include identifying causal relationships within the food security system, harmonizing a comprehensive database including socio-economic, weather and remote sensing data, and estimating the causal effect of humanitarian interventions on malnutrition. On a country level, our results revealed no significant effects, likely due to limited sample size, suboptimal data quality, and an imperfect causal graph resulting from our limited understanding of multidisciplinary systems like food security. Instead, on a district level, results revealed significant effects, further implying the context-specific nature of the system. This underscores the need to enhance data collection and refine causal models with domain experts for more effective future interventions and policies, improving transparency and accountability in humanitarian aid.
Related papers
- Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems.
Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
arXiv Detail & Related papers (2024-11-05T17:17:45Z) - Improving the accuracy of food security predictions by integrating conflict data [0.0]
Violence and armed conflicts have emerged as prominent factors driving food crises.
This paper provides an in-depth analysis of the impact of violent conflicts on food security in Africa.
arXiv Detail & Related papers (2024-10-12T11:26:25Z) - Forecasting trends in food security with real time data [0.0]
We present a quantitative methodology to forecast levels of food consumption for 60 consecutive days, at the sub-national level, in four countries: Mali, Nigeria, Syria, and Yemen.
The methodology is built on publicly available data from the World Food Programme's global hunger monitoring system.
arXiv Detail & Related papers (2023-12-01T14:42:37Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
We have compiled and expanded upon a new dataset called CausalDialogue through crowd-sourcing.
This dataset includes multiple cause-effect pairs within a directed acyclic graph (DAG) structure.
We propose a causality-enhanced method called Exponential Average Treatment Effect (ExMATE) to enhance the impact of causality at the utterance level in training neural conversation models.
arXiv Detail & Related papers (2022-12-20T18:31:50Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Fine-grained prediction of food insecurity using news streams [9.04748106111465]
We leverage recent advances in deep learning to extract high-frequency precursors to food crises from news articles published between 1980 and 2020.
Our text features are causally grounded, interpretable, validated by existing data, and allow us to predict 32% more food crises than existing models.
arXiv Detail & Related papers (2021-11-17T17:35:00Z) - Proceedings of KDD 2021 Workshop on Data-driven Humanitarian Mapping:
Harnessing Human-Machine Intelligence for High-Stake Public Policy and
Resilience Planning [10.76026718771657]
Humanitarian challenges disproportionately impact vulnerable communities worldwide.
Despite these growing perils, there remains a notable paucity of data science research to scientifically inform equitable public policy decisions.
We propose the Data-driven Humanitarian Mapping Research Program to help fill this gap.
arXiv Detail & Related papers (2021-08-31T22:41:14Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
We develop Bayesian inference methods to estimate the risk that an individual is infected.
We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic.
Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact.
arXiv Detail & Related papers (2020-09-20T12:24:45Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.