Limitations of Classically-Simulable Measurements for Quantum State Discrimination
- URL: http://arxiv.org/abs/2310.11323v2
- Date: Sun, 28 Jul 2024 10:02:03 GMT
- Title: Limitations of Classically-Simulable Measurements for Quantum State Discrimination
- Authors: Chengkai Zhu, Zhiping Liu, Chenghong Zhu, Xin Wang,
- Abstract summary: stabilizer operations play a pivotal role in fault-tolerant quantum computing.
We investigate the limitations of classically-simulable measurements in distinguishing quantum states.
- Score: 7.0937306686264625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of fault-tolerant quantum computing, stabilizer operations play a pivotal role, characterized by their remarkable efficiency in classical simulation. This efficiency sets them apart from non-stabilizer operations within the quantum computational theory. In this Letter, we investigate the limitations of classically-simulable measurements in distinguishing quantum states. We demonstrate that any pure magic state and its orthogonal complement of odd prime dimensions cannot be unambiguously distinguished by stabilizer operations, regardless of how many copies of the states are supplied. We also reveal intrinsic similarities and distinctions between the quantum resource theories of magic states and entanglement in quantum state discrimination. The results emphasize the inherent limitations of classically-simulable measurements and contribute to a deeper understanding of the quantum-classical boundary.
Related papers
- Efficient classical simulation of quantum computation beyond Wigner positivity [0.0]
We present the generalization of the CNC formalism, based on closed and noncontextual sets of Pauli observables, to the setting of odd-prime-dimensional qudits.
arXiv Detail & Related papers (2024-07-14T22:25:13Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Approximation of the Nearest Classical-Classical State to a Quantum
State [0.0]
A revolutionary step in computation is driven by quantumness or quantum correlations, which are permanent in entanglements but often in separable states.
The exact quantification of quantumness is an NP-hard problem; thus, we consider alternative approaches to approximate it.
We show that the objective value decreases along the flow by proofs and numerical results.
arXiv Detail & Related papers (2023-01-23T08:26:17Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Experimental investigation of quantum uncertainty relations with
classical shadows [7.675613458661457]
We experimentally investigate quantum uncertainty relations construed with relative entropy of coherence.
We prepare a family of quantum states whose purity can be fully controlled.
Our results indicate the tightness of quantum coherence lower bounds dependents on the reference bases as well as the purity of quantum state.
arXiv Detail & Related papers (2022-02-14T00:26:31Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Emulation of quantum measurements with mixtures of coherent states [0.0]
We propose a methodology to emulate quantum phenomena arising from any non-classical quantum state.
This allows us to successfully reproduce well-known quantum effects using resources that can be much more feasibly generated in the laboratory.
arXiv Detail & Related papers (2021-04-30T14:00:24Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Relating the Entanglement and Optical Nonclassicality of Multimode
States of a Bosonic Quantum Field [0.0]
We provide bounds relating entanglement measures with optical nonclassicality measures.
We infer strong bounds on the entanglement that can be produced with an optically nonclassical state impinging on a beam splitter.
arXiv Detail & Related papers (2020-04-24T14:44:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.