論文の概要: Detection of Malicious DNS-over-HTTPS Traffic: An Anomaly Detection Approach using Autoencoders
- arxiv url: http://arxiv.org/abs/2310.11325v1
- Date: Tue, 17 Oct 2023 15:03:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 02:13:39.565925
- Title: Detection of Malicious DNS-over-HTTPS Traffic: An Anomaly Detection Approach using Autoencoders
- Title(参考訳): 悪質なDNS-over-HTTPSトラフィックの検出:オートエンコーダを用いた異常検出手法
- Authors: Sergio Salinas Monroy, Aman Kumar Gupta, Garrett Wahlstedt,
- Abstract要約: 暗号化されたDoHトラフィックのみを観測することで、悪意のあるDNSトラフィックを検出できるオートエンコーダを設計する。
提案するオートエンコーダは,複数種類の悪質トラフィックに対して,F-1スコアの中央値が99%と高い検出性能を達成できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To maintain the privacy of users' web browsing history, popular browsers encrypt their DNS traffic using the DNS-over-HTTPS (DoH) protocol. Unfortunately, encrypting DNS packets prevents many existing intrusion detection systems from using plaintext domain names to detect malicious traffic. In this paper, we design an autoencoder that is capable of detecting malicious DNS traffic by only observing the encrypted DoH traffic. Compared to previous works, the proposed autoencoder looks for anomalies in DoH traffic, and thus can detect malicious traffic that has not been previously observed, i.e., zero-day attacks. We run extensive experiments to evaluate the performance of our proposed autoencoder and compare it to that of other anomaly detection algorithms, namely, local outlier factor, one-class support vector machine, isolation forest, and variational autoencoders. We find that our proposed autoencoder achieves the highest detection performance, with a median F-1 score of 99\% over several types of malicious traffic.
- Abstract(参考訳): ユーザのWebブラウジング履歴のプライバシを維持するため、人気のあるブラウザはDNS-over-HTTPS(DoH)プロトコルを使用してDNSトラフィックを暗号化する。
残念ながら、DNSパケットの暗号化は、多くの既存の侵入検知システムにおいて、悪意のあるトラフィックを検出するためにプレーンテキストドメイン名の使用を妨げている。
本稿では,暗号化されたDoHトラフィックのみを観測し,悪意のあるDNSトラフィックを検出するオートエンコーダを設計する。
提案したオートエンコーダは、以前の研究と比較すると、DoHトラフィックの異常を検索し、これまで観測されていない悪意のあるトラフィック、すなわちゼロデイ攻撃を検出することができる。
提案するオートエンコーダの性能評価のための広範囲な実験を行い,他の異常検出アルゴリズム,すなわち局所異常係数,一級サポートベクターマシン,孤立林,変分オートエンコーダと比較した。
提案するオートエンコーダは,複数種類の悪質トラフィックに対して,中央値のF-1スコアが99\%の最高検出性能を達成している。
関連論文リスト
- Autosen: improving automatic wifi human sensing through cross-modal
autoencoder [56.44764266426344]
WiFiによる人間のセンシングは、人間の活動を認識する上での低コストでプライバシー上の利点として高く評価されている。
ラベル付きデータなしで自己教師付き学習を可能にすることを目的とした従来のクロスモーダル手法は、振幅-位相の組み合わせから意味のある特徴を抽出するのに苦労する。
我々は、従来のアプローチから外れた革新的な自動WiFiセンシングソリューションであるAutoSenを紹介する。
論文 参考訳(メタデータ) (2024-01-08T19:50:02Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
現在の透かし検出アルゴリズムは、透かし生成プロセスで使用される秘密鍵を必要としており、公開検出中にセキュリティ違反や偽造の影響を受ける。
両段階で同じキーを使用するのではなく、2つの異なるニューラルネットワークを用いて透かしの生成と検出を行う。
論文 参考訳(メタデータ) (2023-07-30T13:43:27Z) - Feature Mining for Encrypted Malicious Traffic Detection with Deep
Learning and Other Machine Learning Algorithms [7.404682407709988]
暗号化メカニズムの人気は、悪意のあるトラフィック検出に大きな課題をもたらします。
従来の検出技術は、暗号化されたトラフィックの復号化なしには機能しない。
本稿では,交通特徴の詳細な分析を行い,現状の交通特徴生成手法の比較を行う。
本稿では,暗号化された不正なトラフィック分析に特化して設計された,暗号化されたトラフィック機能に関する新しい概念を提案する。
論文 参考訳(メタデータ) (2023-04-07T15:25:36Z) - FreeEagle: Detecting Complex Neural Trojans in Data-Free Cases [50.065022493142116]
バックドア攻撃とも呼ばれるディープニューラルネットワークに対するトロイの木馬攻撃は、人工知能に対する典型的な脅威である。
FreeEagleは、複雑なバックドア攻撃を効果的に検出できる最初のデータフリーバックドア検出方法である。
論文 参考訳(メタデータ) (2023-02-28T11:31:29Z) - Using EBGAN for Anomaly Intrusion Detection [13.155954231596434]
ネットワークレコードを通常のトラフィックまたは悪意のあるトラフィックに分類するEBGANベースの侵入検知手法であるIDS-EBGANを提案する。
IDS-EBGANのジェネレータは、トレーニングセット内の元の悪意のあるネットワークトラフィックを、敵対的な悪意のある例に変換する責任がある。
テスト中、IDS-EBGANは識別器の再構成誤差を使用してトラフィックレコードを分類する。
論文 参考訳(メタデータ) (2022-06-21T13:49:34Z) - AVTPnet: Convolutional Autoencoder for AVTP anomaly detection in
Automotive Ethernet Networks [2.415997479508991]
本稿では,Audio Video Transport Protocol (AVTP) 上での異常のオフライン検出のための畳み込みオートエンコーダ (CAE) を提案する。
提案手法は、最近発表された"Automotive Ethernet Intrusion dataset"に基づいて評価される。
論文 参考訳(メタデータ) (2022-01-31T19:13:20Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
我々は、自動話者検証(ASV)のための敵対サンプルを見つけるために、ニューラルボコーダを採用する。
元の音声と再合成音声のASVスコアの違いは、真正と逆正のサンプルの識別に良い指標であることがわかった。
私たちのコードは、将来的な比較作業のためにオープンソースにされます。
論文 参考訳(メタデータ) (2021-07-01T08:58:16Z) - DoS and DDoS Mitigation Using Variational Autoencoders [15.23225419183423]
我々は、インテリジェントなセキュリティソリューション内のコンポーネントとして機能する変分オートエンコーダの可能性を探る。
ネットワークトラフィックフローから潜在表現を学習する変分オートエンコーダの能力に基づく2つの手法を提案する。
論文 参考訳(メタデータ) (2021-05-14T15:38:40Z) - Challenges in Net Neutrality Violation Detection: A Case Study of Wehe
Tool and Improvements [0.0]
我々は、ネット中立性違反を検出するために開発された最新のツール「Wehe」に焦点を当てている。
Weheのリプレイトラフィックが意図されたサービスとして正しく分類されていない重要な弱点を強調します。
本稿では,初期TLSハンドシェイクにおいて,SNIパラメータを適切に設定する手法を提案する。
論文 参考訳(メタデータ) (2021-01-12T15:42:30Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非改ざんされた領域を区別するグローバルバイナリ分類タスクである。
画像スプライシングフォージェリ検出のためのデュアルエンコーダU-Net(D-Unet)という,固定されていないエンコーダと固定エンコーダを用いた新しいネットワークを提案する。
D-Unetと最先端技術の比較実験において、D-Unetは画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-03T10:54:02Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
多くの場合、事前トレーニングされたモデルは、トロイの木馬の振る舞いをモデルに挿入するためにトレーニングパイプラインを中断したかもしれないベンダーから派生している。
本稿では,事前学習したモデルがトロイの木馬か良馬かを検証する手法を提案する。
本手法は,ニューラルネットワークの指紋を,ネットワーク勾配から学習した逆方向の摂動の形でキャプチャする。
論文 参考訳(メタデータ) (2020-07-28T19:00:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。