Chiral Bell-state transfer via dissipative Liouvillian dynamics
- URL: http://arxiv.org/abs/2310.11381v2
- Date: Tue, 17 Sep 2024 09:46:16 GMT
- Title: Chiral Bell-state transfer via dissipative Liouvillian dynamics
- Authors: Shishir Khandelwal, Weijian Chen, Kater W. Murch, GĂ©raldine Haack,
- Abstract summary: Chiral state transfer along closed loops in the vicinity of an exceptional point is one of the many counter-intuitive observations in non-Hermitian physics.
We demonstrate chiral state conversion between singlet and triplet Bell states through fully-quantum Liouvillian dynamics.
We show that the removal of quantum jumps from the dynamics through postselection can result in near-perfect Bell states from initially separable states.
- Score: 10.66389042594859
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chiral state transfer along closed loops in the vicinity of an exceptional point is one of the many counter-intuitive observations in non-Hermitian physics. The application of this property beyond proof-of-principle in quantum physics, is an open question. In this work, we demonstrate chiral state conversion between singlet and triplet Bell states through fully-quantum Liouvillian dynamics. Crucially, we demonstrate that this property can be used for the chiral production of Bell states from separable states with a high fidelity and for a large range of parameters. Additionally, we show that the removal of quantum jumps from the dynamics through postselection can result in near-perfect Bell states from initially separable states. Our work presents the first application of chiral state transfer in quantum information processing and demonstrates a novel way to control entangled states by means of dissipation engineering.
Related papers
- Completeness of Energy Eigenfunctions for the Reflectionless Potential in Quantum Mechanics [0.0]
We prove that the set of bound (discrete) states together with the scattering (continuum) states of the reflectionless potential form a complete set.
In the case of a single bound state, the corresponding wave function can be found from the knowledge of continuum eigenstates of the system.
arXiv Detail & Related papers (2024-11-22T13:53:55Z) - Second Law of Entanglement Manipulation with Entanglement Battery [41.94295877935867]
A central question since the beginning of quantum information science is how two distant parties can convert one entangled state into another.
It has been conjectured that entangled state transformations could be executed reversibly in an regime, mirroring the nature of Carnot cycles in classical thermodynamics.
We investigate the concept of an entanglement battery, an auxiliary quantum system that facilitates quantum state transformations without a net loss of entanglement.
arXiv Detail & Related papers (2024-05-17T07:55:04Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Entanglement properties of superconducting qubits coupled to a
semi-infinite transmission line [5.699243736279749]
We focus on two qubits coupled to an adjustable environment, namely a semi-infinite transmission line.
We examine entanglement dynamics in this model system with initial Werner state, and show that the phenomena of entanglement sudden death and revival can be observed.
We introduce a new type of entangled state called pseudo-Werner state, which preserves as much entangling property as the Werner state, and more importantly, is experiment friendly.
arXiv Detail & Related papers (2022-04-18T08:43:34Z) - High-fidelity state transfer via quantum walks from delocalized states [0.0]
We study the state transfer through quantum walks placed on a bounded one-dimensional path.
We find such a state when superposing centered on the starting and antipodal positions preserves a high fidelity for a long time.
We also explore discrete-time quantum walks to evaluate the qubit fidelity throughout the walk.
arXiv Detail & Related papers (2021-12-07T00:17:46Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.