On the Temperature of Bayesian Graph Neural Networks for Conformal
Prediction
- URL: http://arxiv.org/abs/2310.11479v3
- Date: Sun, 3 Dec 2023 06:31:09 GMT
- Title: On the Temperature of Bayesian Graph Neural Networks for Conformal
Prediction
- Authors: Seohyeon Cha, Honggu Kang, and Joonhyuk Kang
- Abstract summary: Conformal prediction (CP) offers a promising framework for quantifying uncertainty.
CP ensures formal probabilistic guarantees that a prediction set contains a true label with a desired probability.
We empirically demonstrate the existence of temperatures that result in more efficient prediction sets.
- Score: 3.4546761246181696
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate uncertainty quantification in graph neural networks (GNNs) is
essential, especially in high-stakes domains where GNNs are frequently
employed. Conformal prediction (CP) offers a promising framework for
quantifying uncertainty by providing $\textit{valid}$ prediction sets for any
black-box model. CP ensures formal probabilistic guarantees that a prediction
set contains a true label with a desired probability. However, the size of
prediction sets, known as $\textit{inefficiency}$, is influenced by the
underlying model and data generating process. On the other hand, Bayesian
learning also provides a credible region based on the estimated posterior
distribution, but this region is $\textit{well-calibrated}$ only when the model
is correctly specified. Building on a recent work that introduced a scaling
parameter for constructing valid credible regions from posterior estimate, our
study explores the advantages of incorporating a temperature parameter into
Bayesian GNNs within CP framework. We empirically demonstrate the existence of
temperatures that result in more efficient prediction sets. Furthermore, we
conduct an analysis to identify the factors contributing to inefficiency and
offer valuable insights into the relationship between CP performance and model
calibration.
Related papers
- RoCP-GNN: Robust Conformal Prediction for Graph Neural Networks in Node-Classification [0.0]
Graph Neural Networks (GNNs) have emerged as powerful tools for predicting outcomes in graph-structured data.
One way to address this issue is by providing prediction sets that contain the true label with a predefined probability margin.
We propose a novel approach termed Robust Conformal Prediction for GNNs (RoCP-GNN)
Our approach robustly predicts outcomes with any predictive GNN model while quantifying the uncertainty in predictions within the realm of graph-based semi-supervised learning (SSL)
arXiv Detail & Related papers (2024-08-25T12:51:19Z) - Conditional Shift-Robust Conformal Prediction for Graph Neural Network [0.0]
Graph Neural Networks (GNNs) have emerged as potent tools for predicting outcomes in graph-structured data.
Despite their efficacy, GNNs have limited ability to provide robust uncertainty estimates.
We propose Conditional Shift Robust (CondSR) conformal prediction for GNNs.
arXiv Detail & Related papers (2024-05-20T11:47:31Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data.
GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates.
arXiv Detail & Related papers (2023-05-23T21:38:23Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - A Kernel Framework to Quantify a Model's Local Predictive Uncertainty
under Data Distributional Shifts [21.591460685054546]
Internal layer outputs of a trained neural network contain all of the information related to both its mapping function and its input data distribution.
We propose a framework for predictive uncertainty quantification of a trained neural network that explicitly estimates the PDF of its raw prediction space.
The kernel framework is observed to provide model uncertainty estimates with much greater precision based on the ability to detect model prediction errors.
arXiv Detail & Related papers (2021-03-02T00:31:53Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.