On Cold Posteriors of Probabilistic Neural Networks: Understanding the Cold Posterior Effect and A New Way to Learn Cold Posteriors with Tight Generalization Guarantees
- URL: http://arxiv.org/abs/2410.15310v1
- Date: Sun, 20 Oct 2024 06:40:35 GMT
- Title: On Cold Posteriors of Probabilistic Neural Networks: Understanding the Cold Posterior Effect and A New Way to Learn Cold Posteriors with Tight Generalization Guarantees
- Authors: Yijie Zhang,
- Abstract summary: In Bayesian deep learning, neural network weights are treated as random variables with prior distributions.
PAC-Bayesian analysis offers a frequentist framework to derive generalization bounds for randomized predictors.
By balancing the influence of observed data and prior regularization, temperature adjustments can address issues of underfitting or overfitting in Bayesian models.
- Score: 4.532517021515833
- License:
- Abstract: Bayesian inference provides a principled probabilistic framework for quantifying uncertainty by updating beliefs based on prior knowledge and observed data through Bayes' theorem. In Bayesian deep learning, neural network weights are treated as random variables with prior distributions, allowing for a probabilistic interpretation and quantification of predictive uncertainty. However, Bayesian methods lack theoretical generalization guarantees for unseen data. PAC-Bayesian analysis addresses this limitation by offering a frequentist framework to derive generalization bounds for randomized predictors, thereby certifying the reliability of Bayesian methods in machine learning. Temperature $T$, or inverse-temperature $\lambda = \frac{1}{T}$, originally from statistical mechanics in physics, naturally arises in various areas of statistical inference, including Bayesian inference and PAC-Bayesian analysis. In Bayesian inference, when $T < 1$ (``cold'' posteriors), the likelihood is up-weighted, resulting in a sharper posterior distribution. Conversely, when $T > 1$ (``warm'' posteriors), the likelihood is down-weighted, leading to a more diffuse posterior distribution. By balancing the influence of observed data and prior regularization, temperature adjustments can address issues of underfitting or overfitting in Bayesian models, bringing improved predictive performance.
Related papers
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - On the Temperature of Bayesian Graph Neural Networks for Conformal
Prediction [3.4546761246181696]
Conformal prediction (CP) offers a promising framework for quantifying uncertainty.
CP ensures formal probabilistic guarantees that a prediction set contains a true label with a desired probability.
We empirically demonstrate the existence of temperatures that result in more efficient prediction sets.
arXiv Detail & Related papers (2023-10-17T10:24:25Z) - Variational Prediction [95.00085314353436]
We present a technique for learning a variational approximation to the posterior predictive distribution using a variational bound.
This approach can provide good predictive distributions without test time marginalization costs.
arXiv Detail & Related papers (2023-07-14T18:19:31Z) - Adversarial robustness of amortized Bayesian inference [3.308743964406687]
Amortized Bayesian inference is to initially invest computational cost in training an inference network on simulated data.
We show that almost unrecognizable, targeted perturbations of the observations can lead to drastic changes in the predicted posterior and highly unrealistic posterior predictive samples.
We propose a computationally efficient regularization scheme based on penalizing the Fisher information of the conditional density estimator.
arXiv Detail & Related papers (2023-05-24T10:18:45Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
Uncertainty quantification is an important task in machine learning.
We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation.
arXiv Detail & Related papers (2023-02-21T20:23:56Z) - Do Bayesian Variational Autoencoders Know What They Don't Know? [0.6091702876917279]
The problem of detecting the Out-of-Distribution (OoD) inputs is paramount importance for Deep Neural Networks.
It has been previously shown that even Deep Generative Models that allow estimating the density of the inputs may not be reliable.
This paper investigates three approaches to inference: Markov chain Monte Carlo, Bayes gradient by Backpropagation and Weight Averaging-Gaussian.
arXiv Detail & Related papers (2022-12-29T11:48:01Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - The Bayesian Method of Tensor Networks [1.7894377200944511]
We study the Bayesian framework of the Network from two perspective.
We study the Bayesian properties of the Network by visualizing the parameters of the model and the decision boundaries in the two dimensional synthetic data set.
arXiv Detail & Related papers (2021-01-01T14:59:15Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
We show that deep ensembles provide an effective mechanism for approximate Bayesian marginalization.
We also propose a related approach that further improves the predictive distribution by marginalizing within basins of attraction.
arXiv Detail & Related papers (2020-02-20T15:13:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.