論文の概要: Efficient Online Learning with Offline Datasets for Infinite Horizon
MDPs: A Bayesian Approach
- arxiv url: http://arxiv.org/abs/2310.11531v2
- Date: Thu, 1 Feb 2024 22:58:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 19:42:25.677958
- Title: Efficient Online Learning with Offline Datasets for Infinite Horizon
MDPs: A Bayesian Approach
- Title(参考訳): Infinite Horizon MDP のためのオフラインデータセットを用いた効率的なオンライン学習:ベイズ的アプローチ
- Authors: Dengwang Tang, Rahul Jain, Botao Hao, Zheng Wen
- Abstract要約: 学習エージェントが専門家が使用する行動ポリシーをモデル化すれば,累積的後悔を最小限に抑えることができることを示す。
次に,iPSRL アルゴリズムを効率的に近似する Informed RLSVI アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 25.77911741149966
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we study the problem of efficient online reinforcement
learning in the infinite horizon setting when there is an offline dataset to
start with. We assume that the offline dataset is generated by an expert but
with unknown level of competence, i.e., it is not perfect and not necessarily
using the optimal policy. We show that if the learning agent models the
behavioral policy (parameterized by a competence parameter) used by the expert,
it can do substantially better in terms of minimizing cumulative regret, than
if it doesn't do that. We establish an upper bound on regret of the exact
informed PSRL algorithm that scales as $\tilde{O}(\sqrt{T})$. This requires a
novel prior-dependent regret analysis of Bayesian online learning algorithms
for the infinite horizon setting. We then propose the Informed RLSVI algorithm
to efficiently approximate the iPSRL algorithm.
- Abstract(参考訳): 本稿では,オフラインデータセットが存在する場合の無限地平線設定における効率的なオンライン強化学習の問題について検討する。
オフラインデータセットは専門家によって生成されるが、未知のレベルの能力、すなわち、完璧ではなく、必ずしも最適なポリシーを使用する必要はないと仮定する。
学習エージェントが、専門家が使用する行動方針(能力パラメータによってモデル化される)をモデル化すると、それができない場合よりも、累積的な後悔を最小限に抑えることができる。
我々は、$\tilde{o}(\sqrt{t})$でスケールする正確なpsrlアルゴリズムの後悔の上限を確立する。
これは無限地平線設定のためのベイジアンオンライン学習アルゴリズムの新たな事前依存的後悔分析を必要とする。
次に,iPSRL アルゴリズムを効率的に近似する Informed RLSVI アルゴリズムを提案する。
関連論文リスト
- Online Bandit Learning with Offline Preference Data [15.799929216215672]
ノイズの多い選好フィードバックを持つオフラインデータセットでウォームスタートできるオンライン学習のための後部サンプリングアルゴリズムを提案する。
生成したエキスパートの“コンピテンス”をモデル化することで、そのようなデータセットを最も効果的に利用できることを示します。
論文 参考訳(メタデータ) (2024-06-13T20:25:52Z) - Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced
Datasets [53.8218145723718]
オフラインポリシー学習は、既存のトラジェクトリのデータセットを使用して、追加データを収集せずに意思決定ポリシーを学ぶことを目的としている。
我々は、データセットが最適下軌道に支配されている場合、最先端のオフラインRLアルゴリズムはデータセットにおけるトラジェクトリの戻り平均よりも大幅に改善されないことを論じる。
本稿では,標準オフラインRLアルゴリズムにおいて,サンプリング戦略の実現と,プラグイン・アンド・プレイモジュールとして使用できるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-06T17:58:14Z) - Bridging Imitation and Online Reinforcement Learning: An Optimistic Tale [27.02990488317357]
不完全な専門家によるオフラインのデモンストレーションデータセットを前提として、MDPのオンライン学習パフォーマンスをブートストラップする上で、それを活用するための最善の方法は何か?
Informed Posterior Sampling-based RL (iPSRL)アルゴリズムを最初に提案する。
このアルゴリズムは非現実的であるため、オンラインRLのためのRSVIアルゴリズムと模倣学習を組み合わせたiRLSVIアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-20T18:16:25Z) - Adaptive Policy Learning for Offline-to-Online Reinforcement Learning [27.80266207283246]
我々は、エージェントがオフラインデータセットから最初に学習され、オンラインにトレーニングされたオフライン-オンライン設定について検討する。
オフラインおよびオンラインデータを効果的に活用するためのAdaptive Policy Learningというフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-14T08:13:21Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
オンライン学習時にオフラインデータを活用するために、既存のオフライン手法を単純に適用できることを示します。
私たちはこれらの設計選択を広範囲に改善し、パフォーマンスに最も影響を与える重要な要因を示します。
これらのシンプルなレコメンデーションの正しい適用によって、既存のアプローチよりも$mathbf2.5times$の改善が得られます。
論文 参考訳(メタデータ) (2023-02-06T17:30:22Z) - On Instance-Dependent Bounds for Offline Reinforcement Learning with
Linear Function Approximation [80.86358123230757]
本稿では,Bootstrapped and Constrained Pessimistic Value Iteration (BCP-VI) というアルゴリズムを提案する。
部分的なデータカバレッジの仮定の下で、BCP-VI は最適な Q-値関数に正のギャップがあるときに、オフライン RL に対して $tildemathcalO(frac1K)$ の高速レートを得る。
これらは、アダプティブデータからの線形関数近似を持つオフラインRLに対してそれぞれ、最初の$tildemathcalO(frac1K)$boundと絶対零部分最適境界である。
論文 参考訳(メタデータ) (2022-11-23T18:50:44Z) - Discriminator-Weighted Offline Imitation Learning from Suboptimal
Demonstrations [5.760034336327491]
エージェントがオンライン環境を付加せずに最適な専門家行動ポリシーを学習することを目的としたオフライン学習(IL)の課題について検討する。
専門家と非専門家のデータを区別するために,新たな識別器を導入する。
提案アルゴリズムは,ベースラインアルゴリズムよりも高いリターンと高速なトレーニング速度を実現する。
論文 参考訳(メタデータ) (2022-07-20T17:29:04Z) - When Should We Prefer Offline Reinforcement Learning Over Behavioral
Cloning? [86.43517734716606]
オフライン強化学習(RL)アルゴリズムは、オンラインインタラクションなしで、以前に収集した経験を生かして効果的なポリシーを得ることができる。
行動クローニング(BC)アルゴリズムは、教師付き学習を通じてデータセットのサブセットを模倣する。
十分にノイズの多い準最適データに基づいて訓練されたポリシーは、専門家データを持つBCアルゴリズムよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2022-04-12T08:25:34Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
より原理的な方法で過大評価を防止するオフライン強化学習アルゴリズムを提案する。
提案アルゴリズムであるOptiDICEは,最適ポリシーの定常分布補正を直接推定する。
OptiDICEは最先端の手法と競合して動作することを示す。
論文 参考訳(メタデータ) (2021-06-21T00:43:30Z) - Is Pessimism Provably Efficient for Offline RL? [104.00628430454479]
優先度を収集したデータセットに基づいて最適なポリシーを学ぶことを目的としたオフライン強化学習(RL)について検討する。
ペナルティ関数として不確かさ量化器を組み込んだ値反復アルゴリズム(pevi)の悲観的変種を提案する。
論文 参考訳(メタデータ) (2020-12-30T09:06:57Z) - POPO: Pessimistic Offline Policy Optimization [6.122342691982727]
オフポリシーRLメソッドが、バリュー関数ビューからオフライン設定で学習できない理由について検討する。
悲観的オフライン政策最適化(POPO)を提案する。これは悲観的価値関数を学習し、強い政策を得る。
POPOは驚くほどよく機能し、高次元の状態と行動空間を持つタスクにスケールする。
論文 参考訳(メタデータ) (2020-12-26T06:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。