論文の概要: Multi-stage Large Language Model Correction for Speech Recognition
- arxiv url: http://arxiv.org/abs/2310.11532v2
- Date: Mon, 17 Jun 2024 15:21:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 12:30:40.013899
- Title: Multi-stage Large Language Model Correction for Speech Recognition
- Title(参考訳): 音声認識のための多段階大規模言語モデル補正
- Authors: Jie Pu, Thai-Son Nguyen, Sebastian Stüker,
- Abstract要約: 我々は,大言語モデル(LLM)のASR出力の不確実性推定と推論能力を利用した,新しい多段階的アプローチを提案する。
提案手法の有効性を,WERが競合するASRシステムよりも10% 20% 向上していることを示す。
- 参考スコア(独自算出の注目度): 10.995600950995021
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we investigate the usage of large language models (LLMs) to improve the performance of competitive speech recognition systems. Different from previous LLM-based ASR error correction methods, we propose a novel multi-stage approach that utilizes uncertainty estimation of ASR outputs and reasoning capability of LLMs. Specifically, the proposed approach has two stages: the first stage is about ASR uncertainty estimation and exploits N-best list hypotheses to identify less reliable transcriptions; The second stage works on these identified transcriptions and performs LLM-based corrections. This correction task is formulated as a multi-step rule-based LLM reasoning process, which uses explicitly written rules in prompts to decompose the task into concrete reasoning steps. Our experimental results demonstrate the effectiveness of the proposed method by showing 10% ~ 20% relative improvement in WER over competitive ASR systems -- across multiple test domains and in zero-shot settings.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)を用いて,競合音声認識システムの性能向上を図る。
従来のLLMに基づくASR誤り訂正法とは違って,ASR出力の不確実性推定とLLMの推論能力を利用した新しい多段階手法を提案する。
具体的には、提案手法には2つの段階がある: 第一段階は、ASRの不確実性の推定であり、N-bestリストの仮説を利用して、信頼性の低い転写を識別する。
この修正タスクは多段階ルールに基づくLCM推論プロセスとして定式化され、明示的に記述されたルールを使用して、タスクを具体的な推論ステップに分解する。
提案手法の有効性は,複数のテスト領域およびゼロショット設定において,競合するASRシステムに対するWERの10%~20%の相対的な改善を示すことによって実証された。
関連論文リスト
- An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking [50.81324768683995]
FIRSTは、学習からランクへの目的を統合し、最初の生成されたトークンのみのロジットを活用する新しいアプローチである。
我々は、FIRSTの評価をTRECディープラーニングデータセット(DL19-22)に拡張し、様々な領域でその堅牢性を検証する。
我々の実験は、単一トークンの高速リランクは、ドメイン外リランクの品質を損なうものではないことを確認した。
論文 参考訳(メタデータ) (2024-11-08T12:08:17Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
まず、第1生成識別子の出力ロジットを活用して、候補のランク付け順序を直接取得する新しいリストワイズLLMリグレードアプローチであるFIRSTを紹介する。
実験結果から、BEIRベンチマークの利得により、FIRSTはロバストなランキング性能を維持しつつ、推論を50%高速化することが示された。
以上の結果から,LLMリランカーはクロスエンコーダに比べて強い蒸留信号を提供できることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T21:27:50Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
大規模言語モデル(LLM)のバイアスを効果的に軽減するために,正面調整に基づく新たな因果的プロンプト手法を提案する。
実験結果から,提案手法は7つの自然言語処理データセットにおいて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-03-05T07:47:34Z) - Correction Focused Language Model Training for Speech Recognition [14.246583065323192]
本稿では,ASRの誤り語を優先順位付けすることを目的とした,新しい修正型LMトレーニング手法を提案する。
単語レベルのASR誤認度スコアを定義し、従来の単語分布として形成し、LMトレーニングをガイドする。
従来のLMと比較して、修正中心のトレーニングは十分なテキストシナリオにおいて、単語エラー率(WER)を最大5.5%削減する。
論文 参考訳(メタデータ) (2023-10-17T05:10:39Z) - HyPoradise: An Open Baseline for Generative Speech Recognition with
Large Language Models [81.56455625624041]
ASRの誤り訂正に外部の大規模言語モデル(LLM)を利用する最初のオープンソースベンチマークを導入する。
提案したベンチマークには、334,000組以上のN-best仮説を含む新しいデータセットHyPoradise (HP)が含まれている。
合理的なプロンプトと生成能力を持つLLMは、N-bestリストに欠けているトークンを修正できる。
論文 参考訳(メタデータ) (2023-09-27T14:44:10Z) - Generative Speech Recognition Error Correction with Large Language
Models and Task-Activating Prompting [32.70214938434769]
本稿では,大規模言語モデル(LLM)の音声認識後処理機能について検討する。
我々は、ゼロショットと少数ショットのインコンテキスト学習と、新しいタスクアクティベーション・プロンプト法という、異なるプロンプト方式を評価する。
凍結LDMを用いた文脈内学習でのみ再構成を行うことで、ドメインチューニングLMによる再構成と競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2023-09-27T13:36:03Z) - Leveraging Large Language Models for Exploiting ASR Uncertainty [16.740712975166407]
大規模な言語モデルは、書き起こしのための既製の音声認識システムに依存するか、あるいは内蔵された音声モダリティを備える必要がある。
我々は,高い単語誤り率でLLMの発話意図を理解する能力を制限する音声意図分類タスクに取り組む。
我々は,誤り発生1-best仮説に代えて,ASR仮説のn-bestリストでLLMを推し進めることを提案する。
論文 参考訳(メタデータ) (2023-09-09T17:02:33Z) - On Language Model Integration for RNN Transducer based Speech
Recognition [49.84285563767935]
共通RNN-Tフレームワークで構成された様々なILM補正に基づくLM積分法について検討する。
ILM補正による性能改善の2つの主な理由を復号化解釈する。
また,ハイブリッド自己回帰変換器の証明を拡張することで,正確なILMトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-13T16:30:46Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。