論文の概要: FIRST: Faster Improved Listwise Reranking with Single Token Decoding
- arxiv url: http://arxiv.org/abs/2406.15657v1
- Date: Fri, 21 Jun 2024 21:27:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 21:11:15.639331
- Title: FIRST: Faster Improved Listwise Reranking with Single Token Decoding
- Title(参考訳): FIRST:シングルトークンデコーディングによるリストリグレードの高速化
- Authors: Revanth Gangi Reddy, JaeHyeok Doo, Yifei Xu, Md Arafat Sultan, Deevya Swain, Avirup Sil, Heng Ji,
- Abstract要約: まず、第1生成識別子の出力ロジットを活用して、候補のランク付け順序を直接取得する新しいリストワイズLLMリグレードアプローチであるFIRSTを紹介する。
実験結果から、BEIRベンチマークの利得により、FIRSTはロバストなランキング性能を維持しつつ、推論を50%高速化することが示された。
以上の結果から,LLMリランカーはクロスエンコーダに比べて強い蒸留信号を提供できることが示唆された。
- 参考スコア(独自算出の注目度): 56.727761901751194
- License:
- Abstract: Large Language Models (LLMs) have significantly advanced the field of information retrieval, particularly for reranking. Listwise LLM rerankers have showcased superior performance and generalizability compared to existing supervised approaches. However, conventional listwise LLM reranking methods lack efficiency as they provide ranking output in the form of a generated ordered sequence of candidate passage identifiers. Further, they are trained with the typical language modeling objective, which treats all ranking errors uniformly--potentially at the cost of misranking highly relevant passages. Addressing these limitations, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates. Further, we incorporate a learning-to-rank loss during training, prioritizing ranking accuracy for the more relevant passages. Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark. Finally, to illustrate the practical effectiveness of listwise LLM rerankers, we investigate their application in providing relevance feedback for retrievers during inference. Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.
- Abstract(参考訳): 大規模言語モデル (LLM) は情報検索の分野、特に再分類の分野を著しく進歩させてきた。
リストワイズLSMリランカは、既存の教師付きアプローチよりも優れた性能と一般化性を示した。
しかし、従来のリストワイド LLM 再ランク法は、候補パス識別子の生成順序列の形式でランキング出力を提供するため、効率が良くない。
さらに、これらは、すべてのランキングエラーを、非常に関連性の高いパスを誤ってランク付けするコストで、均一に扱う、典型的な言語モデリングの目的で訓練される。
これらの制約に対処するため、FIRSTは、第1生成識別子の出力ロジットを利用して、候補のランク付け順序を直接取得する新しいリストワイズLLMリグレードアプローチである。
さらに,より関連性の高いパスのランク付け精度を優先して,トレーニング中に学習からランク付けまでの損失を考慮に入れた。
実験結果から、BEIRベンチマークの利得により、FIRSTはロバストなランキング性能を維持しつつ、推論を50%高速化することが示された。
最後に、リストワイズLLMリランカの実用性を示すために、推論中のレシーバに関連性フィードバックを提供することについて検討する。
以上の結果から,LLMリランカーはクロスエンコーダに比べて高い蒸留信号を提供できることが示唆された。
関連論文リスト
- Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG [36.754491649652664]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)に外部の知識ソースを利用する権限を与える。
本稿では, 回収した「ハードネガティブ」の有害な影響について考察する。
これを緩和し、長文LLMベースのRAGの堅牢性を高めるために、トレーニングフリーとトレーニングベースの両方のアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-08T12:30:07Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
大規模言語モデル(LLM)を用いたオープンドメイン質問応答(ODQA)の簡易かつ効果的なフレームワークを提案する。
SuRe は LLM が与えられた質問に対するより正確な回答を予測するのに役立つ。
様々なODQAベンチマークの実験結果はSuReの優位性を示し、標準的なプロンプトアプローチよりも4.6%、F1スコアが4.0%向上した。
論文 参考訳(メタデータ) (2024-04-17T01:15:54Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Make Large Language Model a Better Ranker [20.532118635672763]
本稿では,Aligned Listwise Ranking Objectives (ALRO)を用いた大規模言語モデルフレームワークを提案する。
ALROは、LLMの能力とランキングタスクの微妙な要求とのギャップを埋めるように設計されている。
評価研究により,ALROは既存の埋め込み型レコメンデーション法とLLMベースのレコメンデーションベースラインの両方より優れていることがわかった。
論文 参考訳(メタデータ) (2024-03-28T07:22:16Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
ランキングベースレコメンデーション(LlamaRec)のための大規模言語モデルを用いた2段階フレームワークを提案する。
特に,ユーザインタラクション履歴に基づいて候補を検索するために,小規模なシーケンシャルレコメンデータを用いる。
LlamaRecは、推奨パフォーマンスと効率の両方において、データセットの優れたパフォーマンスを一貫して達成している。
論文 参考訳(メタデータ) (2023-10-25T06:23:48Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
本稿では,タスク固有の学習データを用いることなく,言語モデル(LRL)を用いたリスワイズ・リランカを提案する。
3つのTRECウェブサーチデータセットの実験により、LRLは第1段検索結果の再ランク付け時にゼロショットポイントワイズ法より優れるだけでなく、最終段再ランカとしても機能することが示された。
論文 参考訳(メタデータ) (2023-05-03T14:45:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。