論文の概要: Predicting Human Impressions of Robot Performance During Navigation Tasks
- arxiv url: http://arxiv.org/abs/2310.11590v2
- Date: Mon, 04 Nov 2024 15:49:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:26:10.762407
- Title: Predicting Human Impressions of Robot Performance During Navigation Tasks
- Title(参考訳): ナビゲーション作業におけるロボット性能の人間印象予測
- Authors: Qiping Zhang, Nathan Tsoi, Mofeed Nagib, Booyeon Choi, Jie Tan, Hao-Tien Lewis Chiang, Marynel Vázquez,
- Abstract要約: 本研究では,非言語行動手がかりと機械学習技術を用いて,ロボット行動に対する人々の印象を予測する可能性を検討する。
以上の結果から,表情だけでロボット性能の人的印象について有用な情報が得られることが示唆された。
教師付き学習技術は、ほとんどの場合、人間のロボット性能予測よりも優れていたため、有望であった。
- 参考スコア(独自算出の注目度): 8.01980632893357
- License:
- Abstract: Human impressions of robot performance are often measured through surveys. As a more scalable and cost-effective alternative, we investigate the possibility of predicting people's impressions of robot behavior using non-verbal behavioral cues and machine learning techniques. To this end, we first contribute the SEAN TOGETHER Dataset consisting of observations of an interaction between a person and a mobile robot in a VR simulation, together with impressions of robot performance provided by users on a 5-point scale. Second, we contribute analyses of how well humans and supervised learning techniques can predict perceived robot performance based on different observation types (like facial expression features, and features that describe the navigation behavior of the robot and pedestrians). Our results suggest that facial expressions alone provide useful information about human impressions of robot performance; but in the navigation scenarios that we considered, reasoning about spatial features in context is critical for the prediction task. Also, supervised learning techniques showed promise because they outperformed humans' predictions of robot performance in most cases. Further, when predicting robot performance as a binary classification task on unseen users' data, the F1 Score of machine learning models more than doubled in comparison to predicting performance on a 5-point scale. This suggested that the models can have good generalization capabilities, although they are better at telling the directionality of robot performance than predicting exact performance ratings. Based on our findings in simulation, we conducted a real-world demonstration in which a mobile robot uses a machine learning model to predict how a human that follows it perceives it. Finally, we discuss the implications of our results for implementing such supervised learning models in real-world navigation scenarios.
- Abstract(参考訳): ロボットのパフォーマンスの人間の印象は、しばしば調査によって測定される。
よりスケーラブルで費用対効果の高い代替手段として、非言語行動手がかりと機械学習技術を用いて、ロボット行動に対する人々の印象を予測する可能性を検討する。
そこで本研究では,VRシミュレーションにおける人間と移動ロボットのインタラクションを観察するSEAN TOGETHERデータセットと,ユーザが5点スケールで提供したロボット性能の印象とを,まずコントリビュートする。
第2に,人間と教師付き学習技術が,異なる観察タイプ(表情特徴,ロボットと歩行者のナビゲーション動作を記述した特徴など)に基づいて,認識されたロボットのパフォーマンスをどの程度予測できるかの分析に寄与する。
以上の結果から,顔の表情だけでロボットの動作の人間の印象についての有用な情報が得られることが示唆された。
また、教師付き学習技術は、ほとんどの場合、人間のロボット性能予測よりも優れていたため、有望であった。
さらに、未確認データのバイナリ分類タスクとしてロボット性能を予測する場合、F1スコアは5点スケールでの性能を予測するのに比べて2倍以上に向上する。
このことから,ロボットの性能を正確に評価するよりも,ロボット性能の方向性を判断する方が優れているが,モデルが優れた一般化能力を持つことが示唆された。
シミュレーションで得られた知見に基づいて,移動ロボットが機械学習モデルを用いて,その追従する人間がどのように知覚するかを予測する実世界デモを行った。
最後に,現実のナビゲーションシナリオにおいて,このような教師付き学習モデルを実装する上で,この結果がもたらす意味について論じる。
関連論文リスト
- Robots Pre-train Robots: Manipulation-Centric Robotic Representation from Large-Scale Robot Datasets [24.77850617214567]
本稿では,視覚的特徴と操作タスクの行動や受容といった動的情報の両方を抽出する基礎表現学習フレームワークを提案する。
具体的には、DROIDロボットデータセット上で視覚エンコーダを事前訓練し、ロボットの受容状態や動作などの動作関連データを活用する。
本研究では,視覚的観察をロボットの主観的状態-動作ダイナミクスと整合させる新しいコントラスト的損失と,事前トレーニング中の行動を予測する行動クローニング(BC)のようなアクター損失と,時間的コントラスト的損失を導入する。
論文 参考訳(メタデータ) (2024-10-29T17:58:13Z) - HRP: Human Affordances for Robotic Pre-Training [15.92416819748365]
本稿では,手,物,接触の事前学習のためのフレームワークを提案する。
実世界の5つのタスクにおいて、この空き時間事前学習がパフォーマンスを最低15%向上させることを実験的に実証した(3000以上のロボット試験を用いて)。
論文 参考訳(メタデータ) (2024-07-26T17:59:52Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - What Matters to You? Towards Visual Representation Alignment for Robot
Learning [81.30964736676103]
人のために運用する場合、ロボットはエンドユーザーの好みに合わせて報酬を最適化する必要がある。
本稿では、視覚的表現アライメント問題を解決するためのRAPL(Representation-Aligned Preference-based Learning)を提案する。
論文 参考訳(メタデータ) (2023-10-11T23:04:07Z) - Exploring Visual Pre-training for Robot Manipulation: Datasets, Models
and Methods [14.780597545674157]
本稿では,3つの基本的視点から,視覚的事前学習がロボット操作作業に及ぼす影響について検討する。
自己教師型学習と教師型学習を組み合わせた視覚的事前学習方式Vi-PRoMを提案する。
論文 参考訳(メタデータ) (2023-08-07T14:24:52Z) - Surfer: Progressive Reasoning with World Models for Robotic Manipulation [51.26109827779267]
本稿では,新しいシンプルなロボット操作フレームワークであるSurferを紹介する。
Surferは、ロボット操作を視覚シーンの状態伝達として扱い、それをアクションとシーンという2つの部分に分割する。
これは世界モデルに基づいており、ロボット操作を視覚シーンの状態伝達として扱い、アクションとシーンの2つの部分に分けられる。
論文 参考訳(メタデータ) (2023-06-20T07:06:04Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Dynamically Switching Human Prediction Models for Efficient Planning [32.180808286226075]
ロボットは人間のモデル群にアクセスでき、オンラインで性能計算のトレードオフを評価することができる。
ドライビングシミュレーターを用いた実験では、ロボットが常に最高の人間モデルに匹敵する性能を発揮できることを示した。
論文 参考訳(メタデータ) (2021-03-13T23:48:09Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。