論文の概要: High-Resolution Building and Road Detection from Sentinel-2
- arxiv url: http://arxiv.org/abs/2310.11622v3
- Date: Wed, 18 Sep 2024 12:00:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 23:46:22.370239
- Title: High-Resolution Building and Road Detection from Sentinel-2
- Title(参考訳): センチネルの高分解能化と道路検出-2
- Authors: Wojciech Sirko, Emmanuel Asiedu Brempong, Juliana T. C. Marcos, Abigail Annkah, Abel Korme, Mohammed Alewi Hassen, Krishna Sapkota, Tomer Shekel, Abdoulaye Diack, Sella Nevo, Jason Hickey, John Quinn,
- Abstract要約: 複数10m解像度のSentinel-2画像を用いて50cm解像度のビルディングと道路セグメンテーションマスクを生成する方法を示す。
これは、高解像度の画像にアクセス可能な教師のモデルの予測を再現するために、Sentinel-2画像へのアクセスで生徒のモデルを訓練することで実現される。
- 参考スコア(独自算出の注目度): 0.8677035729963776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mapping buildings and roads automatically with remote sensing typically requires high-resolution imagery, which is expensive to obtain and often sparsely available. In this work we demonstrate how multiple 10 m resolution Sentinel-2 images can be used to generate 50 cm resolution building and road segmentation masks. This is done by training a `student' model with access to Sentinel-2 images to reproduce the predictions of a `teacher' model which has access to corresponding high-resolution imagery. While the predictions do not have all the fine detail of the teacher model, we find that we are able to retain much of the performance: for building segmentation we achieve 79.0\% mIoU, compared to the high-resolution teacher model accuracy of 85.5\% mIoU. We also describe two related methods that work on Sentinel-2 imagery: one for counting individual buildings which achieves $R^2 = 0.91$ against true counts and one for predicting building height with 1.5 meter mean absolute error. This work opens up new possibilities for using freely available Sentinel-2 imagery for a range of tasks that previously could only be done with high-resolution satellite imagery.
- Abstract(参考訳): 建物や道路をリモートセンシングで自動的にマッピングするには、高解像度の画像が必要である。
本研究では,50cmのビルディングと道路セグメンテーションマスクを生成するために,複数の10m解像度のSentinel-2画像を使用する方法を示す。
これは、Sentinel-2画像にアクセス可能な‘student’モデルをトレーニングして、対応する高解像度画像にアクセス可能な‘Teacher’モデルの予測を再現する。
予測には教師モデルの詳細な詳細が全て含まれていないが、我々は性能の多くを維持できることがわかった: セグメンテーションを構築する際には、85.5\% mIoUの高分解能教師モデルの精度と比較して79.0\% mIoUを達成する。
実数に対してR^2 = 0.91$の個々の建物を数えることと,1.5mの平均絶対誤差で建物の高さを予測することである。
この研究は、これまで高解像度の衛星画像でしかできなかった様々なタスクに、無料で利用できるSentinel-2画像を使用する新たな可能性を開く。
関連論文リスト
- Depth Anything V2 [84.88796880335283]
V2は3つの重要なプラクティスを通じて、より微細でより堅牢な深度予測を生成する。
すべてのラベル付き実像を合成画像に置き換え、教師モデルの容量を拡大し、大規模な擬似ラベル付き実像のブリッジを通じて生徒モデルを教える。
その強い一般化能力から、距離深度モデルを得るために、距離深度ラベルを微調整する。
論文 参考訳(メタデータ) (2024-06-13T17:59:56Z) - xT: Nested Tokenization for Larger Context in Large Images [79.37673340393475]
xTは、グローバルコンテキストを局所的な詳細で集約するビジョントランスフォーマーのフレームワークである。
我々は、挑戦的な分類タスクにおいて、精度を最大8.6%向上させることができる。
論文 参考訳(メタデータ) (2024-03-04T10:29:58Z) - Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image [85.91935485902708]
ゼロショット単視距離深度モデルの鍵は、大規模データトレーニングと様々なカメラモデルからの距離あいまいさの解消の組合せにあることを示す。
本稿では,あいまいさ問題に明示的に対処し,既存の単分子モデルにシームレスに接続可能な標準カメラ空間変換モジュールを提案する。
本手法は, ランダムに収集したインターネット画像上での計測3次元構造の正確な復元を可能にする。
論文 参考訳(メタデータ) (2023-07-20T16:14:23Z) - A CNN regression model to estimate buildings height maps using
Sentinel-1 SAR and Sentinel-2 MSI time series [0.0]
本研究では,Sentinel-1 (S1) とSentinel-2 (S2) の時系列を用いて,ビルの高さを空間分解能10mで推定するための教師付きマルチモーダルビルディングハイトネットワーク (MBHR-Net) を提案する。
我々のMBHR-Netは,S1画像とS2画像から意味のある特徴を抽出し,画像パターンと建築高さの複雑な時間的関係を学習することを目的としている。
モデルはオランダのRoot Mean Squared Error(RMSE)、Intersection over Union(IoU)、R-squared(R2)の10都市でトレーニングされ、テストされる。
論文 参考訳(メタデータ) (2023-07-03T22:16:17Z) - A Light-weight Deep Learning Model for Remote Sensing Image
Classification [70.66164876551674]
リモートセンシング画像分類(RSIC)のための高性能で軽量なディープラーニングモデルを提案する。
NWPU-RESISC45ベンチマークで広範な実験を行うことで、提案した教師学生モデルは最先端システムより優れている。
論文 参考訳(メタデータ) (2023-02-25T09:02:01Z) - On The Role of Alias and Band-Shift for Sentinel-2 Super-Resolution [5.897281612951907]
本研究では,Sentinel-2画像の単一画像超解像(SISR)問題について検討する。
我々は、バンド間シフトとエイリアスというユニークなセンサー仕様のおかげで、ディープラーニングの手法が細部を再現できることを示す。
論文 参考訳(メタデータ) (2023-02-22T17:08:45Z) - MuS2: A Benchmark for Sentinel-2 Multi-Image Super-Resolution [6.480645418615952]
センチネル2データを含む衛星画像の空間分解能の不足は、多くの実用的なユースケースにおいて深刻な限界である。
超高解像度リコンストラクションはリモートセンシングコミュニティからかなりの注目を集めている。
我々は,Sentinel-2画像のマルチイメージ超解像再構成のための新しいMuS2ベンチマークを提案する。
論文 参考訳(メタデータ) (2022-10-06T08:29:54Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
本稿では,地上画像と架空衛星地図とをマッチングすることにより,車載カメラのローカライゼーションの問題に対処する。
鍵となる考え方は、タスクをポーズ推定として定式化し、ニューラルネットベースの最適化によってそれを解くことである。
標準自動運転車のローカライゼーションデータセットの実験により,提案手法の優位性が確認された。
論文 参考訳(メタデータ) (2022-04-10T19:16:58Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
1枚以上の画像から3D屋内シーンを没入する問題について検討する。
我々の狙いは、新しい視点から高解像度の画像とビデオを作成することである。
本稿では,不完全点雲の再投影から高解像度のRGB-D画像へ直接マップするイメージ・ツー・イメージのGANを提案する。
論文 参考訳(メタデータ) (2022-04-06T17:54:46Z) - Focusing on Shadows for Predicting Heightmaps from Single Remotely
Sensed RGB Images with Deep Learning [3.42658286826597]
本研究では,リモートセンシング画像のシャドウマップを利用したタスク指向ディープラーニングモデルを提案し,その高さマップを算出する。
英国マンチェスターの広大なエリアをカバーするデータセットでモデルを検証する。
論文 参考訳(メタデータ) (2021-04-22T05:31:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。