Towards Abdominal 3-D Scene Rendering from Laparoscopy Surgical Videos
using NeRFs
- URL: http://arxiv.org/abs/2310.11645v1
- Date: Wed, 18 Oct 2023 01:06:19 GMT
- Title: Towards Abdominal 3-D Scene Rendering from Laparoscopy Surgical Videos
using NeRFs
- Authors: Khoa Tuan Nguyen, Francesca Tozzi, Nikdokht Rashidian, Wouter
Willaert, Joris Vankerschaver, and Wesley De Neve
- Abstract summary: We present a comprehensive examination of NeRFs in the context of laparoscopy surgical videos.
NeRFs have recently gained attention thanks to their ability to generate photorealistic images from a 3-D static scene.
Although our experimental results are promising, the proposed approach encounters substantial challenges.
- Score: 0.7106122418396085
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Given that a conventional laparoscope only provides a two-dimensional (2-D)
view, the detection and diagnosis of medical ailments can be challenging. To
overcome the visual constraints associated with laparoscopy, the use of
laparoscopic images and videos to reconstruct the three-dimensional (3-D)
anatomical structure of the abdomen has proven to be a promising approach.
Neural Radiance Fields (NeRFs) have recently gained attention thanks to their
ability to generate photorealistic images from a 3-D static scene, thus
facilitating a more comprehensive exploration of the abdomen through the
synthesis of new views. This distinguishes NeRFs from alternative methods such
as Simultaneous Localization and Mapping (SLAM) and depth estimation. In this
paper, we present a comprehensive examination of NeRFs in the context of
laparoscopy surgical videos, with the goal of rendering abdominal scenes in
3-D. Although our experimental results are promising, the proposed approach
encounters substantial challenges, which require further exploration in future
research.
Related papers
- Hybrid NeRF-Stereo Vision: Pioneering Depth Estimation and 3D Reconstruction in Endoscopy [11.798218793025974]
We introduce an innovative pipeline using Neural Radiance Fields (NeRF) for 3D reconstruction.
Our approach utilizes a preliminary NeRF reconstruction that yields a coarse model, then creates a binocular scene within the reconstructed environment.
High-fidelity depth maps are generated from monocular endoscopic video of a realistic cranial phantom.
arXiv Detail & Related papers (2024-10-05T05:26:21Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - A Review of 3D Reconstruction Techniques for Deformable Tissues in Robotic Surgery [8.909938295090827]
NeRF-based techniques have recently garnered attention for the ability to reconstruct scenes implicitly.
On the other hand, 3D-GS represents scenes explicitly using 3D Gaussians and projects them onto a 2D plane as a replacement for the complex volume rendering in NeRF.
This work explores and reviews state-of-the-art (SOTA) approaches, discussing their innovations and implementation principles.
arXiv Detail & Related papers (2024-08-08T12:51:23Z) - High-fidelity Endoscopic Image Synthesis by Utilizing Depth-guided Neural Surfaces [18.948630080040576]
We introduce a novel method for colon section reconstruction by leveraging NeuS applied to endoscopic images, supplemented by a single frame of depth map.
Our approach demonstrates exceptional accuracy in completely rendering colon sections, even capturing unseen portions of the surface.
This breakthrough opens avenues for achieving stable and consistently scaled reconstructions, promising enhanced quality in cancer screening procedures and treatment interventions.
arXiv Detail & Related papers (2024-04-20T18:06:26Z) - An objective comparison of methods for augmented reality in laparoscopic
liver resection by preoperative-to-intraoperative image fusion [33.12510773034339]
Augmented reality for laparoscopic liver resection is a visualisation mode that allows a surgeon to localise tumours and vessels embedded within the liver by projecting them on top of a laparoscopic image.
Most of the algorithms make use of anatomical landmarks to guide registration.
These landmarks include the liver's inferior ridge, the falciform ligament, and the occluding contours.
We present the Preoperative-to-Intraoperative Laparoscopic Fusion Challenge (P2ILF), which investigates the possibilities of detecting these landmarks automatically and using them in registration.
arXiv Detail & Related papers (2024-01-28T20:30:14Z) - 3D Guidewire Shape Reconstruction from Monoplane Fluoroscopic Images [7.0968125126570625]
We propose a new method to reconstruct the 3D guidewire by utilizing CathSim, a state-of-the-art endovascular simulator.
Our 3D-FGRN delivers results on par with conventional triangulation from simulated monoplane fluoroscopic images.
arXiv Detail & Related papers (2023-11-19T03:20:42Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
This paper proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes.
Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input.
arXiv Detail & Related papers (2023-03-26T12:24:31Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
A radiograph visualizes the internal anatomy of a patient through the use of X-ray, which projects 3D information onto a 2D plane.
To the best of our knowledge, this is the first work on radiograph view synthesis.
We show that by gaining an understanding of radiography in 3D space, our method can be applied to radiograph bone extraction and suppression without groundtruth bone labels.
arXiv Detail & Related papers (2020-12-04T05:08:53Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.