Learning under Label Proportions for Text Classification
- URL: http://arxiv.org/abs/2310.11707v1
- Date: Wed, 18 Oct 2023 04:39:25 GMT
- Title: Learning under Label Proportions for Text Classification
- Authors: Jatin Chauhan, Xiaoxuan Wang, Wei Wang
- Abstract summary: We present one of the preliminary NLP works under the challenging setup of Learning from Proportions (LLP)
The data is provided in an aggregate form called bags and only the proportion of samples in each class as the ground truth.
- Score: 13.29710879730948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present one of the preliminary NLP works under the challenging setup of
Learning from Label Proportions (LLP), where the data is provided in an
aggregate form called bags and only the proportion of samples in each class as
the ground truth. This setup is inline with the desired characteristics of
training models under Privacy settings and Weakly supervision. By
characterizing some irregularities of the most widely used baseline technique
DLLP, we propose a novel formulation that is also robust. This is accompanied
with a learnability result that provides a generalization bound under LLP.
Combining this formulation with a self-supervised objective, our method
achieves better results as compared to the baselines in almost 87% of the
experimental configurations which include large scale models for both long and
short range texts across multiple metrics.
Related papers
- Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
We show how to leverage class text information to mitigate distribution drifts encountered by vision-language models (VLMs) during test-time inference.
We propose to generate pseudo-labels for the test-time samples by exploiting generic class text embeddings as fixed centroids of a label assignment problem.
Experiments on multiple popular test-time adaptation benchmarks presenting diverse complexity empirically show the superiority of CLIP-OT.
arXiv Detail & Related papers (2024-11-26T00:15:37Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - LC-Protonets: Multi-label Few-shot learning for world music audio tagging [65.72891334156706]
We introduce Label-Combination Prototypical Networks (LC-Protonets) to address the problem of multi-label few-shot classification.
LC-Protonets generate one prototype per label combination, derived from the power set of labels present in the limited training items.
Our method is applied to automatic audio tagging across diverse music datasets, covering various cultures and including both modern and traditional music.
arXiv Detail & Related papers (2024-09-17T15:13:07Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations [19.800907485589402]
Fine-tuning pre-trained vision-language models, like CLIP, has yielded success on diverse downstream tasks.
These tuned models tend to become highly specialized, limiting their practicality for real-world deployment.
We propose a lightweight representation calibration method for fine-tuning CLIP.
arXiv Detail & Related papers (2024-03-12T01:47:17Z) - Low-shot Object Learning with Mutual Exclusivity Bias [27.67152913041082]
This paper introduces Low-shot Object Learning with Mutual Exclusivity Bias (LSME), the first computational framing of mutual exclusivity bias.
We provide a novel dataset, comprehensive baselines, and a state-of-the-art method to enable the ML community to tackle this challenging learning task.
arXiv Detail & Related papers (2023-12-06T14:54:10Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery [76.63807209414789]
We challenge the status quo in class-iNCD and propose a learning paradigm where class discovery occurs continuously and truly unsupervisedly.
We propose simple baselines, composed of a frozen PTM backbone and a learnable linear classifier, that are not only simple to implement but also resilient under longer learning scenarios.
arXiv Detail & Related papers (2023-03-28T13:47:16Z) - Learning New Tasks from a Few Examples with Soft-Label Prototypes [18.363177410917597]
We propose a novel few-shot learning approach based on soft-label prototypes (SLPs)
We focus on learning previously unseen NLP tasks from very few examples (4, 8, 16) per class.
We experimentally demonstrate that our approach achieves superior performance on the majority of tested tasks in this data-lean setting.
arXiv Detail & Related papers (2022-10-31T16:06:48Z) - Training image classifiers using Semi-Weak Label Data [26.04162590798731]
In Multiple Instance learning (MIL), weak labels are provided at the bag level with only presence/absence information known.
This paper introduces a novel semi-weak label learning paradigm as a middle ground to mitigate the problem.
We propose a two-stage framework to address the problem of learning from semi-weak labels.
arXiv Detail & Related papers (2021-03-19T03:06:07Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.