Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations
- URL: http://arxiv.org/abs/2403.07241v2
- Date: Fri, 01 Nov 2024 23:30:47 GMT
- Title: Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations
- Authors: Chenyu You, Yifei Min, Weicheng Dai, Jasjeet S. Sekhon, Lawrence Staib, James S. Duncan,
- Abstract summary: Fine-tuning pre-trained vision-language models, like CLIP, has yielded success on diverse downstream tasks.
These tuned models tend to become highly specialized, limiting their practicality for real-world deployment.
We propose a lightweight representation calibration method for fine-tuning CLIP.
- Score: 19.800907485589402
- License:
- Abstract: Fine-tuning pre-trained vision-language models, like CLIP, has yielded success on diverse downstream tasks. However, several pain points persist for this paradigm: (i) directly tuning entire pre-trained models becomes both time-intensive and computationally costly. Additionally, these tuned models tend to become highly specialized, limiting their practicality for real-world deployment; (ii) recent studies indicate that pre-trained vision-language classifiers may overly depend on spurious features -- patterns that correlate with the target in training data, but are not related to the true labeling function; and (iii) existing studies on mitigating the reliance on spurious features, largely based on the assumption that we can identify such features, does not provide definitive assurance for real-world applications. As a piloting study, this work focuses on exploring mitigating the reliance on spurious features for CLIP without using any group annotation. To this end, we systematically study the existence of spurious correlation on CLIP and CLIP+ERM. We first, following recent work on Deep Feature Reweighting (DFR), verify that last-layer retraining can greatly improve group robustness on pretrained CLIP. In view of them, we advocate a lightweight representation calibration method for fine-tuning CLIP, by first generating a calibration set using the pretrained CLIP, and then calibrating representations of samples within this set through contrastive learning, all without the need for group labels. Extensive experiments and in-depth visualizations on several benchmarks validate the effectiveness of our proposals, largely reducing reliance and significantly boosting the model generalization.
Related papers
- Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
We show how to leverage class text information to mitigate distribution drifts encountered by vision-language models (VLMs) during test-time inference.
We propose to generate pseudo-labels for the test-time samples by exploiting generic class text embeddings as fixed centroids of a label assignment problem.
Experiments on multiple popular test-time adaptation benchmarks presenting diverse complexity empirically show the superiority of CLIP-OT.
arXiv Detail & Related papers (2024-11-26T00:15:37Z) - Active Learning for Vision-Language Models [29.309503214127016]
We propose a novel active learning (AL) framework that enhances the zero-shot classification performance of vision-language models (VLMs)
Our approach first calibrates the predicted entropy of VLMs and then utilizes a combination of self-uncertainty and neighbor-aware uncertainty to calculate a reliable uncertainty measure for active sample selection.
Our experiments show that the proposed approach outperforms existing AL approaches on several image classification datasets.
arXiv Detail & Related papers (2024-10-29T16:25:50Z) - Robust Calibration of Large Vision-Language Adapters [17.583536041845402]
This paper addresses the critical issue of miscalibration in CLIP-based model adaptation.
We empirically demonstrate that popular CLIP adaptation approaches, such as Adapters, Prompt Learning, and Test-Time Adaptation, substantially degrade the calibration capabilities of the zero-shot baseline.
Motivated by these observations, we present a simple and model-agnostic solution to mitigate miscalibration, by scaling the logit range of each sample to its zero-shot prediction logits.
arXiv Detail & Related papers (2024-07-18T15:27:56Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - BaFTA: Backprop-Free Test-Time Adaptation For Zero-Shot Vision-Language Models [20.88680592729709]
We propose a novel backpropagation-free algorithm BaFTA for test-time adaptation of vision-language models.
BaFTA directly estimates class centroids using online clustering within a projected embedding space.
We demonstrate that BaFTA consistently outperforms state-of-the-art test-time adaptation methods in both effectiveness and efficiency.
arXiv Detail & Related papers (2024-06-17T08:16:24Z) - AMU-Tuning: Effective Logit Bias for CLIP-based Few-shot Learning [50.78033979438031]
We first introduce a unified formulation to analyze CLIP-based few-shot learning methods from a perspective of logit bias.
Based on analysis of key components, this paper proposes a novel AMU-Tuning method to learn effective logit bias for CLIP-based few-shot classification.
arXiv Detail & Related papers (2024-04-13T10:46:11Z) - Bayesian Exploration of Pre-trained Models for Low-shot Image Classification [14.211305168954594]
This work proposes a simple and effective probabilistic model ensemble framework based on Gaussian processes.
We achieve the integration of prior knowledge by specifying the mean function with CLIP and the kernel function.
We demonstrate that our method consistently outperforms competitive ensemble baselines regarding predictive performance.
arXiv Detail & Related papers (2024-03-30T10:25:28Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
This paper extensively studies the impact of Continual Learning (CL) models as pre-trainers.
We find that the transfer quality of the representation often increases gradually without noticeable degradation in fine-tuning performance.
We propose a new fine-tuning scheme, GLobal Attention Discretization (GLAD), that preserves rich task-generic representation during solving downstream tasks.
arXiv Detail & Related papers (2023-06-21T05:26:28Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
We propose to equip vision-text models with the ability to refine their embedding with cross-modal retrieved information from a memory at inference time.
Remarkably, we show that this can be done with a light-weight, single-layer, fusion transformer on top of a frozen CLIP.
Our experiments validate that our retrieval-enhanced contrastive (RECO) training improves CLIP performance substantially on several challenging fine-grained tasks.
arXiv Detail & Related papers (2023-06-12T15:52:02Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.