VST++: Efficient and Stronger Visual Saliency Transformer
- URL: http://arxiv.org/abs/2310.11725v2
- Date: Thu, 11 Apr 2024 08:11:20 GMT
- Title: VST++: Efficient and Stronger Visual Saliency Transformer
- Authors: Nian Liu, Ziyang Luo, Ni Zhang, Junwei Han,
- Abstract summary: We develop an efficient and stronger VST++ model to explore global long-range dependencies.
We evaluate our model across various transformer-based backbones on RGB, RGB-D, and RGB-T SOD benchmark datasets.
- Score: 74.26078624363274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While previous CNN-based models have exhibited promising results for salient object detection (SOD), their ability to explore global long-range dependencies is restricted. Our previous work, the Visual Saliency Transformer (VST), addressed this constraint from a transformer-based sequence-to-sequence perspective, to unify RGB and RGB-D SOD. In VST, we developed a multi-task transformer decoder that concurrently predicts saliency and boundary outcomes in a pure transformer architecture. Moreover, we introduced a novel token upsampling method called reverse T2T for predicting a high-resolution saliency map effortlessly within transformer-based structures. Building upon the VST model, we further propose an efficient and stronger VST version in this work, i.e. VST++. To mitigate the computational costs of the VST model, we propose a Select-Integrate Attention (SIA) module, partitioning foreground into fine-grained segments and aggregating background information into a single coarse-grained token. To incorporate 3D depth information with low cost, we design a novel depth position encoding method tailored for depth maps. Furthermore, we introduce a token-supervised prediction loss to provide straightforward guidance for the task-related tokens. We evaluate our VST++ model across various transformer-based backbones on RGB, RGB-D, and RGB-T SOD benchmark datasets. Experimental results show that our model outperforms existing methods while achieving a 25% reduction in computational costs without significant performance compromise. The demonstrated strong ability for generalization, enhanced performance, and heightened efficiency of our VST++ model highlight its potential.
Related papers
- Visual Fourier Prompt Tuning [63.66866445034855]
We propose the Visual Fourier Prompt Tuning (VFPT) method as a general and effective solution for adapting large-scale transformer-based models.
Our approach incorporates the Fast Fourier Transform into prompt embeddings and harmoniously considers both spatial and frequency domain information.
Our results demonstrate that our approach outperforms current state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2024-11-02T18:18:35Z) - Denoising Vision Transformers [43.03068202384091]
We propose a two-stage denoising approach, termed Denoising Vision Transformers (DVT)
In the first stage, we separate the clean features from those contaminated by positional artifacts by enforcing cross-view feature consistency with neural fields on a per-image basis.
In the second stage, we train a lightweight transformer block to predict clean features from raw ViT outputs, leveraging the derived estimates of the clean features as supervision.
arXiv Detail & Related papers (2024-01-05T18:59:52Z) - FactoFormer: Factorized Hyperspectral Transformers with Self-Supervised
Pretraining [36.44039681893334]
Hyperspectral images (HSIs) contain rich spectral and spatial information.
Current state-of-the-art hyperspectral transformers only tokenize the input HSI sample along the spectral dimension.
We propose a novel factorized spectral-spatial transformer that incorporates factorized self-supervised pretraining procedures.
arXiv Detail & Related papers (2023-09-18T02:05:52Z) - An Empirical Study of Training End-to-End Vision-and-Language
Transformers [50.23532518166621]
We present METER(textbfMultimodal textbfEnd-to-end textbfTransformtextbfER), through which we investigate how to design and pre-train a fully transformer-based VL model.
Specifically, we dissect the model designs along multiple dimensions: vision encoders (e.g., CLIP-ViT, Swin transformer), text encoders (e.g., RoBERTa, DeBERTa), multimodal fusion (e.g., merged attention vs. co-
arXiv Detail & Related papers (2021-11-03T17:55:36Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
Recently, DETR pioneered the solution vision tasks with transformers, it directly translates the image feature map into the object result.
Recent transformer-based image recognition model andTT show consistent efficiency gain.
arXiv Detail & Related papers (2021-09-15T01:10:30Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z) - Visual Saliency Transformer [127.33678448761599]
We develop a novel unified model based on a pure transformer, Visual Saliency Transformer (VST), for both RGB and RGB-D salient object detection (SOD)
It takes image patches as inputs and leverages the transformer to propagate global contexts among image patches.
Experimental results show that our model outperforms existing state-of-the-art results on both RGB and RGB-D SOD benchmark datasets.
arXiv Detail & Related papers (2021-04-25T08:24:06Z) - Transformer Transforms Salient Object Detection and Camouflaged Object
Detection [43.79585695098729]
We conduct research on applying the transformer networks for salient object detection (SOD)
Specifically, we adopt the dense transformer backbone for fully supervised RGB image based SOD, RGB-D image pair based SOD, and weakly supervised SOD via scribble supervision.
As an extension, we also apply our fully supervised model to the task of camouflaged object detection (COD) for camouflaged object segmentation.
arXiv Detail & Related papers (2021-04-20T17:12:51Z) - Toward Transformer-Based Object Detection [12.704056181392415]
Vision Transformers can be used as a backbone by a common detection task head to produce competitive COCO results.
ViT-FRCNN demonstrates several known properties associated with transformers, including large pretraining capacity and fast fine-tuning performance.
We view ViT-FRCNN as an important stepping stone toward a pure-transformer solution of complex vision tasks such as object detection.
arXiv Detail & Related papers (2020-12-17T22:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.