Denoising Vision Transformers
- URL: http://arxiv.org/abs/2401.02957v2
- Date: Mon, 22 Jul 2024 09:07:27 GMT
- Title: Denoising Vision Transformers
- Authors: Jiawei Yang, Katie Z Luo, Jiefeng Li, Congyue Deng, Leonidas Guibas, Dilip Krishnan, Kilian Q Weinberger, Yonglong Tian, Yue Wang,
- Abstract summary: We propose a two-stage denoising approach, termed Denoising Vision Transformers (DVT)
In the first stage, we separate the clean features from those contaminated by positional artifacts by enforcing cross-view feature consistency with neural fields on a per-image basis.
In the second stage, we train a lightweight transformer block to predict clean features from raw ViT outputs, leveraging the derived estimates of the clean features as supervision.
- Score: 43.03068202384091
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a crucial yet often overlooked issue inherent to Vision Transformers (ViTs): feature maps of these models exhibit grid-like artifacts, which hurt the performance of ViTs in downstream dense prediction tasks such as semantic segmentation, depth prediction, and object discovery. We trace this issue down to the positional embeddings at the input stage. To mitigate this, we propose a two-stage denoising approach, termed Denoising Vision Transformers (DVT). In the first stage, we separate the clean features from those contaminated by positional artifacts by enforcing cross-view feature consistency with neural fields on a per-image basis. This per-image optimization process extracts artifact-free features from raw ViT outputs, providing clean feature estimates for offline applications. In the second stage, we train a lightweight transformer block to predict clean features from raw ViT outputs, leveraging the derived estimates of the clean features as supervision. Our method, DVT, does not require re-training the existing pre-trained ViTs, and is immediately applicable to any Vision Transformer architecture. We evaluate our method on a variety of representative ViTs (DINO, DeiT-III, EVA02, CLIP, DINOv2, DINOv2-reg) and demonstrate that DVT consistently improves existing state-of-the-art general-purpose models in semantic and geometric tasks across multiple datasets. We hope our study will encourage a re-evaluation of ViT design, especially regarding the naive use of positional embeddings. Our code and checkpoints are publicly available.
Related papers
- Cascaded Dual Vision Transformer for Accurate Facial Landmark Detection [9.912884384424542]
This paper introduces a new facial landmark detector based on vision transformers, which consists of two unique designs: Dual Vision Transformer (D-ViT) and Long Skip Connections (LSC)
We propose learning the interconnections between these linear bases to model the inherent geometric relations among landmarks via Channel-split ViT.
We also suggest using long skip connections to deliver low-level image features to all prediction blocks, thereby preventing useful information from being discarded by intermediate supervision.
arXiv Detail & Related papers (2024-11-08T07:26:39Z) - Do Vision-Language Transformers Exhibit Visual Commonsense? An Empirical Study of VCR [51.72751335574947]
Visual Commonsense Reasoning (VCR) calls for explanatory reasoning behind question answering over visual scenes.
Progress on the benchmark dataset stems largely from the recent advancement of Vision-Language Transformers (VL Transformers)
This paper posits that the VL Transformers do not exhibit visual commonsense, which is the key to VCR.
arXiv Detail & Related papers (2024-05-27T08:26:58Z) - Exploring Self-Supervised Vision Transformers for Deepfake Detection: A Comparative Analysis [38.074487843137064]
This paper investigates the effectiveness of self-supervised pre-trained vision transformers (ViTs) compared to supervised pre-trained ViTs and conventional neural networks (ConvNets) for detecting facial deepfake images and videos.
It examines their potential for improved generalization and explainability, especially with limited training data.
By leveraging SSL ViTs for deepfake detection with modest data and partial fine-tuning, we find comparable adaptability to deepfake detection and explainability via the attention mechanism.
arXiv Detail & Related papers (2024-05-01T07:16:49Z) - VST++: Efficient and Stronger Visual Saliency Transformer [74.26078624363274]
We develop an efficient and stronger VST++ model to explore global long-range dependencies.
We evaluate our model across various transformer-based backbones on RGB, RGB-D, and RGB-T SOD benchmark datasets.
arXiv Detail & Related papers (2023-10-18T05:44:49Z) - ViT-Calibrator: Decision Stream Calibration for Vision Transformer [49.60474757318486]
We propose a new paradigm dubbed Decision Stream that boosts the performance of general Vision Transformers.
We shed light on the information propagation mechanism in the learning procedure by exploring the correlation between different tokens and the relevance coefficient of multiple dimensions.
arXiv Detail & Related papers (2023-04-10T02:40:24Z) - Anti-Oversmoothing in Deep Vision Transformers via the Fourier Domain
Analysis: From Theory to Practice [111.47461527901318]
Vision Transformer (ViT) has recently demonstrated promise in computer vision problems.
ViT saturates quickly with depth increasing, due to the observed attention collapse or patch uniformity.
We propose two techniques to mitigate the undesirable low-pass limitation.
arXiv Detail & Related papers (2022-03-09T23:55:24Z) - A Unified Pruning Framework for Vision Transformers [40.7622551128182]
Vision transformer (ViT) and its variants have achieved promising performances in various computer vision tasks.
We propose a unified framework for structural pruning of both ViTs and its variants, namely UP-ViTs.
Our method focuses on pruning all ViTs components while maintaining the consistency of the model structure.
arXiv Detail & Related papers (2021-11-30T05:01:02Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.