論文の概要: VQ-NeRF: Neural Reflectance Decomposition and Editing with Vector
Quantization
- arxiv url: http://arxiv.org/abs/2310.11864v3
- Date: Sat, 11 Nov 2023 04:08:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 19:59:35.587290
- Title: VQ-NeRF: Neural Reflectance Decomposition and Editing with Vector
Quantization
- Title(参考訳): VQ-NeRF:ベクトル量子化によるニューラルリフレクタンス分解と編集
- Authors: Hongliang Zhong, Jingbo Zhang, Jing Liao
- Abstract要約: VQ-NeRFは、ベクトル量子化(VQ)を組み込んだ2分岐ニューラルネットワークモデルで、3Dシーンにおけるリフレクタンスフィールドの分解と編集を行う。
材料を離散化することにより, 分解過程におけるノイズを低減し, 離散材料のセグメンテーションマップを生成することができる。
- 参考スコア(独自算出の注目度): 15.35485158565445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose VQ-NeRF, a two-branch neural network model that incorporates
Vector Quantization (VQ) to decompose and edit reflectance fields in 3D scenes.
Conventional neural reflectance fields use only continuous representations to
model 3D scenes, despite the fact that objects are typically composed of
discrete materials in reality. This lack of discretization can result in noisy
material decomposition and complicated material editing. To address these
limitations, our model consists of a continuous branch and a discrete branch.
The continuous branch follows the conventional pipeline to predict decomposed
materials, while the discrete branch uses the VQ mechanism to quantize
continuous materials into individual ones. By discretizing the materials, our
model can reduce noise in the decomposition process and generate a segmentation
map of discrete materials. Specific materials can be easily selected for
further editing by clicking on the corresponding area of the segmentation
outcomes. Additionally, we propose a dropout-based VQ codeword ranking strategy
to predict the number of materials in a scene, which reduces redundancy in the
material segmentation process. To improve usability, we also develop an
interactive interface to further assist material editing. We evaluate our model
on both computer-generated and real-world scenes, demonstrating its superior
performance. To the best of our knowledge, our model is the first to enable
discrete material editing in 3D scenes.
- Abstract(参考訳): 本研究では,ベクトル量子化(vector quantization, vq)を組み込んだ2分岐ニューラルネットワークモデルであるvq-nerfを提案する。
従来のニューラル・リフレクタンス・フィールドは、3Dシーンをモデル化するためにのみ連続表現を使用する。
この離散化の欠如は、ノイズのある材料分解と複雑な材料編集をもたらす。
これらの制限に対処するため、我々のモデルは連続枝と離散枝からなる。
連続枝は従来のパイプラインに従って分解物を予測し、離散枝はVQ機構を用いて連続物質を個別に定量化する。
材料を離散化することにより,分解過程におけるノイズを低減し,離散材料のセグメンテーションマップを生成する。
セグメンテーション結果の対応する領域をクリックして、さらに編集するための特定材料を容易に選択することができる。
さらに,シーン内の材料数を予測するために,ドロップアウトに基づくVQコードワードランキング手法を提案する。
ユーザビリティを向上させるために,素材編集を支援するインタラクティブインタフェースも開発している。
我々は,コンピュータ生成シーンと実世界のシーンの両方でモデルを評価し,その優れた性能を示す。
我々の知る限り、我々のモデルは3Dシーンで個別の素材編集を可能にする最初のモデルである。
関連論文リスト
- Talking Heads: Understanding Inter-layer Communication in Transformer Language Models [32.2976613483151]
2つのLMで用いられるメカニズムを分析し、1つのタスクでコンテキスト内のアイテムを選択的に抑制する。
モデルが残ストリームの低ランクな部分空間に書き込まれて,後続のレイヤで読み出される特徴を表現することが分かりました。
論文 参考訳(メタデータ) (2024-06-13T18:12:01Z) - MaterialSeg3D: Segmenting Dense Materials from 2D Priors for 3D Assets [63.284244910964475]
本稿では,2次元のセマンティクスから基礎となる物質を推定する3次元アセット素材生成フレームワークを提案する。
このような先行モデルに基づいて,材料を三次元空間で解析する機構を考案する。
論文 参考訳(メタデータ) (2024-04-22T07:00:17Z) - Total-Decom: Decomposed 3D Scene Reconstruction with Minimal Interaction [51.3632308129838]
人間のインタラクションを最小限に抑えた3次元再構成法であるTotal-Decomを提案する。
提案手法は,Segment Anything Model (SAM) とハイブリッド型暗黙的なニューラルサーフェス表現をシームレスに統合し,メッシュベースの領域成長技術を用いて正確な3次元オブジェクト分解を行う。
提案手法をベンチマークデータセット上で広範囲に評価し,アニメーションやシーン編集などの下流アプリケーションの可能性を示す。
論文 参考訳(メタデータ) (2024-03-28T11:12:33Z) - OR-NeRF: Object Removing from 3D Scenes Guided by Multiview Segmentation
with Neural Radiance Fields [53.32527220134249]
ニューラル・レージアンス・フィールド(NeRF)の出現により,3次元シーン編集への関心が高まっている。
現在の手法では、時間を要するオブジェクトのラベル付け、特定のターゲットを削除する能力の制限、削除後のレンダリング品質の妥協といった課題に直面している。
本稿では, OR-NeRF と呼ばれる新しいオブジェクト除去パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-17T18:18:05Z) - In-N-Out: Faithful 3D GAN Inversion with Volumetric Decomposition for Face Editing [28.790900756506833]
3D対応のGANは、2D対応の編集機能を保ちながら、ビュー合成のための新しい機能を提供する。
GANインバージョンは、入力画像や動画を再構成する潜時コードを求める重要なステップであり、この潜時コードを操作することで様々な編集タスクを可能にする。
我々は3次元GANの入力からOODオブジェクトを明示的にモデル化することでこの問題に対処する。
論文 参考訳(メタデータ) (2023-02-09T18:59:56Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
テンポラルな文グラウンドディングは、与えられた文クエリに従って、意図しないビデオのターゲットセグメントをセマンティックにローカライズすることを目的としている。
これまでのほとんどの研究は、ビデオ全体のフレーム全体のフレームレベルの特徴を学習することに集中しており、それらをテキスト情報と直接一致させる。
我々は,光フロー誘導型モーションアウェア,検出ベース外観アウェア,3D認識オブジェクトレベル機能を備えた,動き誘導型3Dセマンティック推論ネットワーク(MA3SRN)を提案する。
論文 参考訳(メタデータ) (2022-03-06T13:57:09Z) - Learning Multi-Object Dynamics with Compositional Neural Radiance Fields [63.424469458529906]
本稿では,暗黙的オブジェクトエンコーダ,ニューラルレージアンスフィールド(NeRF),グラフニューラルネットワークに基づく画像観測から構成予測モデルを学習する手法を提案する。
NeRFは3D以前の強みから、シーンを表現するための一般的な選択肢となっている。
提案手法では,学習した潜時空間にRTを応用し,そのモデルと暗黙のオブジェクトエンコーダを用いて潜時空間を情報的かつ効率的にサンプリングする。
論文 参考訳(メタデータ) (2022-02-24T01:31:29Z) - Editing Conditional Radiance Fields [40.685602081728554]
ニューラルラジアンスフィールド(NeRF)は、シーンごとに最適化された高品質のビュー合成をサポートするシーンモデルです。
本稿では,形状カテゴリで学習したカテゴリレベルのnrfのユーザ編集を可能にすることを検討する。
局所領域の色や形状を変更するために,粗い2次元ユーザスクリブルを3次元空間に伝播させる手法を提案する。
論文 参考訳(メタデータ) (2021-05-13T17:59:48Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - MaterialGAN: Reflectance Capture using a Generative SVBRDF Model [33.578080406338266]
本稿では,StyleGAN2をベースとした深層生成畳み込みネットワークであるMaterialGANを提案する。
逆レンダリングフレームワークにおいて,MaterialGANは強力な素材として利用できることを示す。
携帯端末を用いたフラッシュ照明下で撮影された画像からSVBRDFを再構成する作業において,この枠組みを実証する。
論文 参考訳(メタデータ) (2020-09-30T21:33:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。