IRAD: Implicit Representation-driven Image Resampling against Adversarial Attacks
- URL: http://arxiv.org/abs/2310.11890v3
- Date: Sat, 13 Apr 2024 14:57:15 GMT
- Title: IRAD: Implicit Representation-driven Image Resampling against Adversarial Attacks
- Authors: Yue Cao, Tianlin Li, Xiaofeng Cao, Ivor Tsang, Yang Liu, Qing Guo,
- Abstract summary: We introduce a novel approach to counter adversarial attacks, namely, image resampling.
Image resampling transforms a discrete image into a new one, simulating the process of scene recapturing or rerendering as specified by a geometrical transformation.
We show that our method significantly enhances the adversarial robustness of diverse deep models against various attacks while maintaining high accuracy on clean images.
- Score: 16.577595936609665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel approach to counter adversarial attacks, namely, image resampling. Image resampling transforms a discrete image into a new one, simulating the process of scene recapturing or rerendering as specified by a geometrical transformation. The underlying rationale behind our idea is that image resampling can alleviate the influence of adversarial perturbations while preserving essential semantic information, thereby conferring an inherent advantage in defending against adversarial attacks. To validate this concept, we present a comprehensive study on leveraging image resampling to defend against adversarial attacks. We have developed basic resampling methods that employ interpolation strategies and coordinate shifting magnitudes. Our analysis reveals that these basic methods can partially mitigate adversarial attacks. However, they come with apparent limitations: the accuracy of clean images noticeably decreases, while the improvement in accuracy on adversarial examples is not substantial. We propose implicit representation-driven image resampling (IRAD) to overcome these limitations. First, we construct an implicit continuous representation that enables us to represent any input image within a continuous coordinate space. Second, we introduce SampleNet, which automatically generates pixel-wise shifts for resampling in response to different inputs. Furthermore, we can extend our approach to the state-of-the-art diffusion-based method, accelerating it with fewer time steps while preserving its defense capability. Extensive experiments demonstrate that our method significantly enhances the adversarial robustness of diverse deep models against various attacks while maintaining high accuracy on clean images.
Related papers
- Towards Robust Image Stitching: An Adaptive Resistance Learning against
Compatible Attacks [66.98297584796391]
Image stitching seamlessly integrates images captured from varying perspectives into a single wide field-of-view image.
Given a pair of captured images, subtle perturbations and distortions which go unnoticed by the human visual system tend to attack the correspondence matching.
This paper presents the first attempt to improve the robustness of image stitching against adversarial attacks.
arXiv Detail & Related papers (2024-02-25T02:36:33Z) - Adversarial Purification of Information Masking [8.253834429336656]
Adrial attacks generate minuscule, imperceptible perturbations to images to deceive neural networks.
Counteracting these, adversarial purification methods seek to transform adversarial input samples into clean output images to defend against adversarial attacks.
We propose a novel adversarial purification approach named Information Mask Purification (IMPure) to extensively eliminate adversarial perturbations.
arXiv Detail & Related papers (2023-11-26T15:50:19Z) - Content-based Unrestricted Adversarial Attack [53.181920529225906]
We propose a novel unrestricted attack framework called Content-based Unrestricted Adversarial Attack.
By leveraging a low-dimensional manifold that represents natural images, we map the images onto the manifold and optimize them along its adversarial direction.
arXiv Detail & Related papers (2023-05-18T02:57:43Z) - Adversarial examples by perturbing high-level features in intermediate
decoder layers [0.0]
Instead of perturbing pixels, we use an encoder-decoder representation of the input image and perturb intermediate layers in the decoder.
Our perturbation possesses semantic meaning, such as a longer beak or green tints.
We show that our method modifies key features such as edges and that defence techniques based on adversarial training are vulnerable to our attacks.
arXiv Detail & Related papers (2021-10-14T07:08:15Z) - Adversarial Examples Detection beyond Image Space [88.7651422751216]
We find that there exists compliance between perturbations and prediction confidence, which guides us to detect few-perturbation attacks from the aspect of prediction confidence.
We propose a method beyond image space by a two-stream architecture, in which the image stream focuses on the pixel artifacts and the gradient stream copes with the confidence artifacts.
arXiv Detail & Related papers (2021-02-23T09:55:03Z) - Error Diffusion Halftoning Against Adversarial Examples [85.11649974840758]
Adversarial examples contain carefully crafted perturbations that can fool deep neural networks into making wrong predictions.
We propose a new image transformation defense based on error diffusion halftoning, and combine it with adversarial training to defend against adversarial examples.
arXiv Detail & Related papers (2021-01-23T07:55:02Z) - Stylized Adversarial Defense [105.88250594033053]
adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
We propose to exploit additional information from the feature space to craft stronger adversaries.
Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses.
arXiv Detail & Related papers (2020-07-29T08:38:10Z) - Robust Face Verification via Disentangled Representations [20.393894616979402]
We introduce a robust algorithm for face verification, deciding whether twoimages are of the same person or not.
We use the generativemodel during training as an online augmentation method instead of a test-timepurifier that removes adversarial noise.
We experimentally show that, when coupled with adversarial training, the proposed scheme converges with aweak inner solver and has a higher clean and robust accuracy than state-of-the-art-methods when evaluated against white-box physical attacks.
arXiv Detail & Related papers (2020-06-05T19:17:02Z) - Towards Achieving Adversarial Robustness by Enforcing Feature
Consistency Across Bit Planes [51.31334977346847]
We train networks to form coarse impressions based on the information in higher bit planes, and use the lower bit planes only to refine their prediction.
We demonstrate that, by imposing consistency on the representations learned across differently quantized images, the adversarial robustness of networks improves significantly.
arXiv Detail & Related papers (2020-04-01T09:31:10Z) - Detecting Patch Adversarial Attacks with Image Residuals [9.169947558498535]
A discriminator is trained to distinguish between clean and adversarial samples.
We show that the obtained residuals act as a digital fingerprint for adversarial attacks.
Results show that the proposed detection method generalizes to previously unseen, stronger attacks.
arXiv Detail & Related papers (2020-02-28T01:28:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.