Simultaneous Measurement of Multiple Incompatible Observables and Tradeoff in Multiparameter Quantum Estimation
- URL: http://arxiv.org/abs/2310.11925v2
- Date: Tue, 08 Oct 2024 02:39:34 GMT
- Title: Simultaneous Measurement of Multiple Incompatible Observables and Tradeoff in Multiparameter Quantum Estimation
- Authors: Hongzhen Chen, Lingna Wang, Haidong Yuan,
- Abstract summary: We provide a framework to study the implementation of an arbitrary finite number of observables with a single measurement.
Our work paves the way for optimizing various tasks in quantum information science that involve multiple noncommutative observables.
- Score: 1.0104586293349587
- License:
- Abstract: How well can multiple incompatible observables be implemented by a single measurement? This is a fundamental problem in quantum mechanics with wide implications for the performance optimization of numerous tasks in quantum information science. While existing studies have been mostly focusing on the approximation of two observables with a single measurement, in practice multiple observables are often encountered, for which the errors of the approximations are little understood. Here we provide a framework to study the implementation of an arbitrary finite number of observables with a single measurement. Our methodology yields novel analytical bounds on the errors of these implementations, significantly advancing our understanding of this fundamental problem. Additionally, we introduce a more stringent bound utilizing semi-definite programming that, in the context of two observables, generates an analytical bound tighter than previously known bounds. The derived bounds have direct applications in assessing the trade-off between the precision of estimating multiple parameters in quantum metrology, an area with crucial theoretical and practical implications. To validate the validity of our findings, we conducted experimental verification using a superconducting quantum processor. This experimental validation not only confirms the theoretical results but also effectively bridges the gap between the derived bounds and empirical data obtained from real-world experiments. Our work paves the way for optimizing various tasks in quantum information science that involve multiple noncommutative observables.
Related papers
- Optimization for expectation value estimation with shallow quantum circuits [1.5733643545082079]
Estimating linear properties of quantum states is a fundamental task in quantum information science.
We propose a framework that optimize sample complexity for estimating the expectation value of any observable using a shallow parameterized quantum circuit.
We numerically demonstrate the performance of our algorithm by estimating the ground energy of a sparse Hamiltonian and the inner product of two pure states.
arXiv Detail & Related papers (2024-07-28T14:04:33Z) - The binarisation loophole in high-dimensional quantum correlation experiments [0.0]
We argue that measurement binarisation procedures are flawed and open a loophole in black-box correlation experiments.
We propose a method to faithfully analyse correlations from binarised measurements.
arXiv Detail & Related papers (2024-07-23T08:59:57Z) - Parameter estimation with limited access of measurements [0.12102521201635405]
We present a theoretical framework to explore the parameter estimation with limited access of measurements.
We analyze the effect of non-optimal measurement on the estimation precision.
We show that the minimum Euclidean distance between an observable and the optimal ones is analyzed and the results show that the observable closed to the optimal ones better.
arXiv Detail & Related papers (2023-10-06T05:34:32Z) - Testing Heisenberg's measurement uncertainty relation of three
observables [3.021369108296711]
Heisenberg's measurement uncertainty relations (MUR) of two quantum observables are essential for quantum foundations and quantum information science.
We report the first experimental test of MURs for three quantum observables.
arXiv Detail & Related papers (2022-11-17T07:38:31Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z) - Transmission Estimation at the Fundamental Quantum Cram\'er-Rao Bound
with Macroscopic Quantum Light [0.0]
We show that it is possible to perform measurements with the required precision to do so.
For our largest transmission level of 84%, we show a 62% reduction over the optimal classical protocol in the variance in transmission estimation.
arXiv Detail & Related papers (2022-01-21T21:50:24Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.