Parameter estimation with limited access of measurements
- URL: http://arxiv.org/abs/2310.04026v2
- Date: Sun, 3 Mar 2024 05:26:47 GMT
- Title: Parameter estimation with limited access of measurements
- Authors: Jianning Li, Dianzhen Cui, and X. X. Yi
- Abstract summary: We present a theoretical framework to explore the parameter estimation with limited access of measurements.
We analyze the effect of non-optimal measurement on the estimation precision.
We show that the minimum Euclidean distance between an observable and the optimal ones is analyzed and the results show that the observable closed to the optimal ones better.
- Score: 0.12102521201635405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum parameter estimation holds the promise of quantum technologies, in
which physical parameters can be measured with much greater precision than what
is achieved with classical technologies. However, how to obtain a best
precision when the optimal measurement is not accessible is still an open
problem. In this work, we present a theoretical framework to explore the
parameter estimation with limited access of measurements by analyzing the
effect of non-optimal measurement on the estimation precision. We define a
quantity to characterize the effect and illustrate how to optimize observables
to attain a bound with limited accessibility of observables. On the other side,
we introduce the minimum Euclidean distance to quantify the difference between
an observable and the optimal ones in terms of Frobenius norm and find that the
measurement with a shorter distance to the optimal ones benefits the
estimation. Two examples are presented to show our theory. In the first, we
analyze the effect of non-optimal measurement on the estimation precision of
the transition frequency for a driven qubit. While in the second example, we
consider a bipartite system, in which one of them is measurement inaccessible.
To be specific, we take a toy model, the NV-center in diamond as the bipartite
system, where the NV-center electronic spin interacts with a single nucleus via
the dipole-dipole interaction. We achieve a precise estimation for the nuclear
Larmor frequency by optimizing only the observables of the electronic spin. In
these two examples, the minimum Euclidean distance between an observable and
the optimal ones is analyzed and the results show that the observable closed to
the optimal ones better the estimation precision.
Related papers
- QestOptPOVM: An iterative algorithm to find optimal measurements for quantum parameter estimation [17.305295658536828]
We introduce an algorithm, termed QestPOVM, designed to directly identify optimal positive operator-Opt measure (POVM)
Through rigorous testing on several examples for multiple copies of qubit states (up to six copies), we demonstrate the efficiency and accuracy of our proposed algorithm.
Our algorithm functions as a tool for elucidating the explicit forms of optimal POVMs, thereby enhancing our understanding of quantum parameter estimation methodologies.
arXiv Detail & Related papers (2024-03-29T11:46:09Z) - Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Simultaneous Measurement of Multiple Incompatible Observables and Tradeoff in Multiparameter Quantum Estimation [1.0104586293349587]
We provide a framework to study the implementation of an arbitrary finite number of observables with a single measurement.
Our work paves the way for optimizing various tasks in quantum information science that involve multiple noncommutative observables.
arXiv Detail & Related papers (2023-10-18T12:41:35Z) - Fundamental limitations of time measurement precision in Hong-Ou-Mandel
interferometry [0.0]
In quantum mechanics, the precision achieved in parameter estimation using a quantum state as a probe is determined by the measurement strategy employed.
We show that the scaling of precision with visibility depends on the effective area in time-frequency phase space occupied by the state used as a probe, and we find that an optimal scaling exists.
arXiv Detail & Related papers (2023-09-19T14:15:22Z) - Tight Cram\'{e}r-Rao type bounds for multiparameter quantum metrology
through conic programming [61.98670278625053]
It is paramount to have practical measurement strategies that can estimate incompatible parameters with best precisions possible.
Here, we give a concrete way to find uncorrelated measurement strategies with optimal precisions.
We show numerically that there is a strict gap between the previous efficiently computable bounds and the ultimate precision bound.
arXiv Detail & Related papers (2022-09-12T13:06:48Z) - Quantum scale estimation [0.0]
Quantum scale estimation establishes the most precise framework for the estimation of scale parameters that is allowed by the laws of quantum mechanics.
The new framework is exploited to generalise scale-invariant global thermometry, as well as to address the estimation of the lifetime of an atomic state.
On a more conceptual note, the optimal strategy is employed to construct an observable for scale parameters, an approach which may serve as a template for a more systematic search of quantum observables.
arXiv Detail & Related papers (2021-11-23T15:03:19Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.