論文の概要: On the Benefit of Generative Foundation Models for Human Activity
Recognition
- arxiv url: http://arxiv.org/abs/2310.12085v1
- Date: Wed, 18 Oct 2023 16:27:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-19 15:47:04.325946
- Title: On the Benefit of Generative Foundation Models for Human Activity
Recognition
- Title(参考訳): 人間活動認識のための生成基礎モデルの利点について
- Authors: Zikang Leng, Hyeokhyen Kwon, Thomas Pl\"otz
- Abstract要約: 人間の活動認識(HAR)では、注釈付きデータの限られた可用性が重要な課題である。
生成AIの最新の進歩からインスピレーションを得て、生成AIはテキスト記述から仮想IMUデータを自動生成することで、このデータ不足に対処できると考えている。
我々は、コミュニティのための生成AIの恩恵を受ける可能性のある、有望な研究経路をいくつか見極めている。
- 参考スコア(独自算出の注目度): 0.27624021966289597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In human activity recognition (HAR), the limited availability of annotated
data presents a significant challenge. Drawing inspiration from the latest
advancements in generative AI, including Large Language Models (LLMs) and
motion synthesis models, we believe that generative AI can address this data
scarcity by autonomously generating virtual IMU data from text descriptions.
Beyond this, we spotlight several promising research pathways that could
benefit from generative AI for the community, including the generating
benchmark datasets, the development of foundational models specific to HAR, the
exploration of hierarchical structures within HAR, breaking down complex
activities, and applications in health sensing and activity summarization.
- Abstract(参考訳): ヒューマンアクティビティ認識(har)では、注釈付きデータの可用性の制限が大きな課題となっている。
大規模言語モデル(LLM)やモーション合成モデルなど、生成AIの最新の進歩からインスピレーションを得て、生成AIはテキスト記述から仮想IMUデータを自律的に生成することで、このデータ不足に対処できると考えている。
この他にも、ベンチマークデータセットの生成、HAR固有の基礎モデルの開発、HAR内の階層構造の調査、複雑なアクティビティの分解、健康検知とアクティビティの要約への応用など、コミュニティのための生成AIの恩恵を受ける有望な研究経路をいくつか紹介する。
関連論文リスト
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - Generative AI like ChatGPT in Blockchain Federated Learning: use cases, opportunities and future [4.497001527881303]
本研究は、フェデレーション学習における生成AIの潜在的な統合について検討する。
GAN(generative adversarial Network)とVAE(variantal autoencoder)
合成データの生成は、限られたデータ可用性に関連する課題に、フェデレートされた学習を支援する。
論文 参考訳(メタデータ) (2024-07-25T19:43:49Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - MATRIX: Multi-Agent Trajectory Generation with Diverse Contexts [47.12378253630105]
マルチヒューマン・ロボットインタラクションシナリオにおけるトラジェクトリレベルのデータ生成について検討する。
Diverse conteXts(MATRIX)を用いたマルチエージェントTRajectory生成と呼ばれる学習に基づく自動軌道生成モデルを提案する。
論文 参考訳(メタデータ) (2024-03-09T23:28:54Z) - Generative AI for Synthetic Data Generation: Methods, Challenges and the
Future [12.506811635026907]
大規模言語モデル(LLM)から合成データを生成する研究の最近の動向
本稿では,タスク固有トレーニングデータの生成にこれらの巨大なLCMを活用する高度な技術について述べる。
論文 参考訳(メタデータ) (2024-03-07T03:38:44Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - IMUGPT 2.0: Language-Based Cross Modality Transfer for Sensor-Based
Human Activity Recognition [0.19791587637442667]
クロスモーダリティ転送アプローチは、既存のデータセットを、ビデオのようなソースモーダリティからターゲットモーダリティ(IMU)に変換する。
我々はIMUGPTに2つの新しい拡張を導入し、実用的なHARアプリケーションシナリオの利用を拡大した。
我々の多様性指標は、仮想IMUデータの生成に必要な労力を少なくとも50%削減できることを示した。
論文 参考訳(メタデータ) (2024-02-01T22:37:33Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。