論文の概要: Multimodal Generative AI for Story Point Estimation in Software Development
- arxiv url: http://arxiv.org/abs/2505.16290v1
- Date: Thu, 22 May 2025 06:40:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.091395
- Title: Multimodal Generative AI for Story Point Estimation in Software Development
- Title(参考訳): ソフトウェア開発におけるストーリーポイント推定のためのマルチモーダル生成AI
- Authors: Mohammad Rubyet Islam, Peter Sandborn,
- Abstract要約: この研究は、アジャイルソフトウェア開発におけるストーリーポイント推定を強化するために、マルチモーダル・ジェネレーティブ・AI(Multimodal Generative AI)の適用について検討する。
BERT, CNN, XGBoostといった高度なモデルを用いてテキスト, 画像, 分類データを統合することにより, 従来の単一モーダル推定手法の限界を超えている。
- 参考スコア(独自算出の注目度): 0.9831489366502301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research explores the application of Multimodal Generative AI to enhance story point estimation in Agile software development. By integrating text, image, and categorical data using advanced models like BERT, CNN, and XGBoost, our approach surpasses the limitations of traditional single-modal estimation methods. The results demonstrate strong accuracy for simpler story points, while also highlighting challenges in more complex categories due to data imbalance. This study further explores the impact of categorical data, particularly severity, on the estimation process, emphasizing its influence on model performance. Our findings emphasize the transformative potential of multimodal data integration in refining AI-driven project management, paving the way for more precise, adaptable, and domain-specific AI capabilities. Additionally, this work outlines future directions for addressing data variability and enhancing the robustness of AI in Agile methodologies.
- Abstract(参考訳): この研究は、アジャイルソフトウェア開発におけるストーリーポイント推定を強化するために、マルチモーダル・ジェネレーティブ・AI(Multimodal Generative AI)の適用について検討する。
BERT, CNN, XGBoostといった高度なモデルを用いてテキスト, 画像, 分類データを統合することにより, 従来の単一モーダル推定手法の限界を超えている。
結果は、単純なストーリーポイントに対して強い精度を示し、データ不均衡によるより複雑なカテゴリの課題も強調する。
本研究は,分類データ,特に重大度が推定過程に与える影響をさらに検討し,モデル性能への影響を強調した。
我々の発見は、AI主導のプロジェクト管理を洗練させ、より正確で適応性があり、ドメイン固有のAI機能を実現する上で、マルチモーダルデータ統合の変革的な可能性を強調しています。
さらに、この研究は、データの多様性に対処し、アジャイル方法論におけるAIの堅牢性を高めるための今後の方向性を概説している。
関連論文リスト
- VirtualXAI: A User-Centric Framework for Explainability Assessment Leveraging GPT-Generated Personas [0.07499722271664146]
eXplainable AI(XAI)の需要が増加し、AIモデルの解釈可能性、透明性、信頼性が向上した。
仮想ペルソナによる定量的ベンチマークと質的ユーザアセスメントを統合したフレームワークを提案する。
これにより、推定されたXAIスコアが得られ、与えられたシナリオに対して最適なAIモデルとXAIメソッドの両方にカスタマイズされたレコメンデーションが提供される。
論文 参考訳(メタデータ) (2025-03-06T09:44:18Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
本研究では、回帰問題に対する入力データの非形式的特徴をフィルタリングする特徴属性法の可能性について検討する。
我々は、初期データ空間から最適な変数セットを選択するために、統合グラディエントとk平均クラスタリングを組み合わせた機能選択パイプラインを導入する。
提案手法の有効性を検証するため, ターボ機械の開発過程における羽根振動解析を実世界の産業問題に適用した。
論文 参考訳(メタデータ) (2024-09-25T09:50:51Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
我々は,新しいマルチモーダル命令データ進化フレームワークであるMMEvolを提案する。
MMEvolは、きめ細かい知覚、認知的推論、相互作用の進化の洗練された組み合わせによって、データ品質を反復的に改善する。
提案手法は,9つのタスクにおいて,最先端モデルに比べて有意に少ない精度でSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2024-09-09T17:44:00Z) - Causality-Aware Transformer Networks for Robotic Navigation [13.719643934968367]
Visual Navigationの現在の研究は、改善の機会を明らかにしている。
RNNとTransformerの直接的な採用はしばしば、Embodied AIと従来のシーケンシャルなデータモデリングの具体的な違いを見落としている。
因果理解モジュールを特徴とするナビゲーション用因果認識変換器(CAT)ネットワークを提案する。
論文 参考訳(メタデータ) (2024-09-04T12:53:26Z) - Survey and Taxonomy: The Role of Data-Centric AI in Transformer-Based Time Series Forecasting [36.31269406067809]
データ中心のAIは、AIモデルのトレーニング、特にトランスフォーマーベースのTSFモデルの効率的なトレーニングに不可欠である、と私たちは主張する。
我々は、データ中心のAIの観点から、これまでの研究成果をレビューし、トランスフォーマーベースのアーキテクチャとデータ中心のAIの将来の開発のための基礎的な作業を行うつもりです。
論文 参考訳(メタデータ) (2024-07-29T08:27:21Z) - Explainable AI in Grassland Monitoring: Enhancing Model Performance and
Domain Adaptability [0.6131022957085438]
草原は高い生物多様性と複数の生態系サービスを提供する能力で知られている。
指標植物の自動識別の課題は、大規模な草地モニタリングの鍵となる障害である。
本稿では,移動学習と草地モニタリングへのXAIアプローチを中心に,後者の2つの課題を考察する。
論文 参考訳(メタデータ) (2023-12-13T10:17:48Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。