論文の概要: DiagrammerGPT: Generating Open-Domain, Open-Platform Diagrams via LLM Planning
- arxiv url: http://arxiv.org/abs/2310.12128v2
- Date: Mon, 15 Jul 2024 16:32:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 02:54:11.655576
- Title: DiagrammerGPT: Generating Open-Domain, Open-Platform Diagrams via LLM Planning
- Title(参考訳): DiagrammerGPT: LLMプランニングによるオープンドメイン・オープンプラットフォームダイアグラムの生成
- Authors: Abhay Zala, Han Lin, Jaemin Cho, Mohit Bansal,
- Abstract要約: テキスト・ツー・イメージ(T2I)世代はここ数年で著しい成長を遂げている。
それにもかかわらず、T2Iモデルでダイアグラムを生成する作業はほとんど行われていない。
本稿では,新しい2段階のテキスト・ツー・ダイアグラム生成フレームワークであるDiagrammerGPTを紹介する。
我々のフレームワークは、既存のT2Iモデルを上回る精度で、より正確なダイアグラムを生成する。
- 参考スコア(独自算出の注目度): 62.51232333352754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image (T2I) generation has seen significant growth over the past few years. Despite this, there has been little work on generating diagrams with T2I models. A diagram is a symbolic/schematic representation that explains information using structurally rich and spatially complex visualizations (e.g., a dense combination of related objects, text labels, directional arrows/lines, etc.). Existing state-of-the-art T2I models often fail at diagram generation because they lack fine-grained object layout control when many objects are densely connected via complex relations such as arrows/lines, and also often fail to render comprehensible text labels. To address this gap, we present DiagrammerGPT, a novel two-stage text-to-diagram generation framework leveraging the layout guidance capabilities of LLMs to generate more accurate diagrams. In the first stage, we use LLMs to generate and iteratively refine 'diagram plans' (in a planner-auditor feedback loop). In the second stage, we use a diagram generator, DiagramGLIGEN, and a text label rendering module to generate diagrams (with clear text labels) following the diagram plans. To benchmark the text-to-diagram generation task, we introduce AI2D-Caption, a densely annotated diagram dataset built on top of the AI2D dataset. We show that our DiagrammerGPT framework produces more accurate diagrams, outperforming existing T2I models. We also provide comprehensive analysis, including open-domain diagram generation, multi-platform vector graphic diagram generation, human-in-the-loop editing, and multimodal planner/auditor LLMs.
- Abstract(参考訳): テキスト・ツー・イメージ(T2I)世代はここ数年で著しい成長を遂げている。
それにもかかわらず、T2Iモデルでダイアグラムを生成する作業はほとんど行われていない。
図は、構造的に豊かで空間的に複雑な視覚化(例えば、関連するオブジェクト、テキストラベル、方向矢印や線などの密結合)を使って情報を説明する記号的・スキーマ的表現である。
既存の最先端のT2Iモデルは、多くのオブジェクトが矢印や線のような複雑な関係によって密結合されているときに、細粒度のオブジェクトレイアウト制御が欠けているため、図生成時に失敗することが多い。
このギャップに対処するため、LLMのレイアウト誘導機能を活用してより正確な図を生成する新しい2段階のテキスト-ダイアグラム生成フレームワークであるDiagrammerGPTを提案する。
最初の段階では、LLMを使って'ダイアグラムプラン'を生成し、反復的に洗練する(プランナー・オーディタフィードバックループで)。
第2段階ではダイアグラム生成器,ダイアグラムGLIGEN,およびテキストラベルレンダリングモジュールを使用して,ダイアグラム計画に従ってダイアグラムを生成する(明確なテキストラベルを持つ)。
テキストからダイアグラムを生成するタスクをベンチマークするために,AI2Dデータセット上に構築された高密度アノテーション付きダイアグラムデータセットであるAI2D-Captionを導入する。
我々のDiagrammerGPTフレームワークは、既存のT2Iモデルよりも正確なダイアグラムを生成する。
また、オープンドメイン図生成、マルチプラットフォームベクタグラフィック図生成、ヒューマン・イン・ザ・ループ編集、マルチモーダルプランナー/オーディタLLMなど、包括的な分析も提供する。
関連論文リスト
- Plan-over-Graph: Towards Parallelable LLM Agent Schedule [53.834646147919436]
大規模言語モデル(LLM)はタスク計画の推論において例外的な能力を示した。
本稿では,まず実生活のテキストタスクを実行可能なサブタスクに分解し,抽象的なタスクグラフを構築する,新しいパラダイムであるプランオーバーグラフを提案する。
モデルはこのタスクグラフを入力として理解し、並列実行計画を生成する。
論文 参考訳(メタデータ) (2025-02-20T13:47:51Z) - GraphiT: Efficient Node Classification on Text-Attributed Graphs with Prompt Optimized LLMs [0.0]
GraphiT(Graphs in Text)は、グラフをテキストフォーマットにエンコードするフレームワークである。
GraphiTがすぐに微調整することなく、測定可能な結果をもたらす方法を示します。
論文 参考訳(メタデータ) (2025-02-14T19:38:41Z) - A Schema-Guided Reason-while-Retrieve framework for Reasoning on Scene Graphs with Large-Language-Models (LLMs) [5.37125692728042]
SceneGuided RetrieveRwRは、グラフによる推論と計画のためのフレームワークである。
我々のフレームワークは、数値Q&Aや計画タスクにおいて、既存のLCMベースのアプローチを超越していることを示す。
論文 参考訳(メタデータ) (2025-02-05T18:50:38Z) - ChartCoder: Advancing Multimodal Large Language Model for Chart-to-Code Generation [90.82566869965011]
textbfChartCoderは、最初の専用チャートからコードへのMLLMである。
textbfChart2Code-160kは、チャート・ツー・コード生成のための、最初の大規模かつ多様なデータセットである。
実験によると、ChartCoderは7Bパラメータしか持たないが、チャート・トゥ・コードベンチマークで既存のオープンソースのMLLMを超えている。
論文 参考訳(メタデータ) (2025-01-11T17:52:22Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
本稿では,3Bパラメータのみを用いたチャート理解のための効率的なMLLMであるTinyChartを提案する。
TinyChartは,1)プログラム・オブ・ソート(PoT)学習戦略による数値計算学習の負担軽減,2)ビジョン・トーケン・マージ・モジュールによる高解像度画像のためのビジョン・トランスフォーマーによって生成される長大な視覚特徴系列の削減という,効率的なチャート理解における2つの課題を克服した。
論文 参考訳(メタデータ) (2024-04-25T14:23:24Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
大規模言語モデル(LLM)は、特に知識集約的なタスクにおいて幻覚に悩まされる。
既存の研究は、外部知識コーパスから取得した個々のテキスト単位でLLMを拡張することを提案する。
本稿では,グラフを反復的に推論することで,LLMをグラフで拡張するためのGraph Chain-of-thinkt (Graph-CoT) というフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T15:41:53Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
大規模言語とグラフアシスタント(LLaGA)は、グラフ構造化データの複雑さを扱う革新的なモデルである。
LLaGAは汎用性、一般化性、解釈性に優れており、異なるデータセットやタスク間で一貫して動作する。
実験の結果,LLaGAは4つのデータセットと3つのタスクに1つの単一モデルを用いて優れた性能を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-13T02:03:26Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
グラフニューラルネットワーク(GNN)は、グラフ構造を理解するために進化してきた。
堅牢性を高めるために、自己教師付き学習(SSL)はデータ拡張の重要なツールとなっている。
本研究は,ゼロショット学習環境におけるグラフモデルの一般化を推し進めることによって,この問題に対処する。
論文 参考訳(メタデータ) (2023-10-19T06:17:46Z) - INFINITY: A Simple Yet Effective Unsupervised Framework for Graph-Text
Mutual Conversion [43.70416280548082]
グラフ・ツー・テキスト(G2T)生成とテキスト・ツー・グラフ(T2G)トリプル抽出は知識グラフの構築と適用に不可欠である。
既存の教師なしのアプローチは、グラフテキスト並列データの使用を避けるため、2つのタスクを共同で学習するのに適した候補であることが判明した。
我々は、外部アノテーションツールや追加の並列情報を必要としない、シンプルで効果的な教師なしアプローチであるINFINITYを提案する。
論文 参考訳(メタデータ) (2022-09-22T03:12:43Z) - JointGT: Graph-Text Joint Representation Learning for Text Generation
from Knowledge Graphs [44.06715423776722]
本論文では,ジョイントGTと呼ばれるグラフテキスト共同表現学習モデルを提案する。
エンコーディング中、各トランスフォーマー層にプラグインされた構造対応セマンティックアグリゲーションモジュールを考案した。
種々のKG-to-textデータセット上で,JointGTが新たな最先端性能を得ることを示す。
論文 参考訳(メタデータ) (2021-06-19T14:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。