論文の概要: Text2Chart31: Instruction Tuning for Chart Generation with Automatic Feedback
- arxiv url: http://arxiv.org/abs/2410.04064v1
- Date: Sat, 5 Oct 2024 07:25:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 14:20:57.487810
- Title: Text2Chart31: Instruction Tuning for Chart Generation with Automatic Feedback
- Title(参考訳): Text2Chart31: 自動フィードバックによるチャート生成のためのインストラクションチューニング
- Authors: Fatemeh Pesaran Zadeh, Juyeon Kim, Jin-Hwa Kim, Gunhee Kim,
- Abstract要約: 階層的なパイプラインとグラフ生成のための新しいデータセットを提案する。
私たちのデータセットであるText2Chart31には、Matplotlibライブラリを参照する31のユニークなプロットタイプが含まれています。
本稿では,人間からのフィードバックを必要とせず,グラフ生成タスクのための強化学習に基づく指導指導手法を提案する。
- 参考スコア(独自算出の注目度): 37.275533538711436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated strong capabilities across various language tasks, notably through instruction-tuning methods. However, LLMs face challenges in visualizing complex, real-world data through charts and plots. Firstly, existing datasets rarely cover a full range of chart types, such as 3D, volumetric, and gridded charts. Secondly, supervised fine-tuning methods do not fully leverage the intricate relationships within rich datasets, including text, code, and figures. To address these challenges, we propose a hierarchical pipeline and a new dataset for chart generation. Our dataset, Text2Chart31, includes 31 unique plot types referring to the Matplotlib library, with 11.1K tuples of descriptions, code, data tables, and plots. Moreover, we introduce a reinforcement learning-based instruction tuning technique for chart generation tasks without requiring human feedback. Our experiments show that this approach significantly enhances the model performance, enabling smaller models to outperform larger open-source models and be comparable to state-of-the-art proprietary models in data visualization tasks. We make the code and dataset available at https://github.com/fatemehpesaran310/Text2Chart31.
- Abstract(参考訳): 大規模言語モデル (LLM) は様々な言語タスク、特に命令チューニング手法を通じて、強力な能力を示してきた。
しかし、LLMはチャートやプロットを通して複雑な実世界のデータを視覚化する際の課題に直面している。
まず、既存のデータセットが3D、ボリューム、グリッドチャートなど、完全なチャートタイプをカバーすることはめったにない。
第二に、教師付き微調整手法は、テキスト、コード、フィギュアを含むリッチデータセット内の複雑な関係を完全に活用していない。
これらの課題に対処するために、階層パイプラインとグラフ生成のための新しいデータセットを提案する。
私たちのデータセットであるText2Chart31には、Matplotlibライブラリを参照する31のユニークなプロットタイプが含まれています。
さらに,人間からのフィードバックを必要とせず,グラフ生成タスクのための強化学習に基づく指導指導手法を提案する。
実験により,本手法によりモデル性能が大幅に向上し,より小規模なモデルで大規模なオープンソースモデルより優れ,データ可視化タスクにおける最先端のプロプライエタリモデルに匹敵する結果が得られた。
コードとデータセットはhttps://github.com/fatemehpesaran310/Text2Chart31で公開しています。
関連論文リスト
- On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
本稿では,MLLMのチャート理解を改善するために必要な学習過程について考察する。
詳細なチャート理解に適したMLLMであるCHOPINLLMを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:36Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
本稿では,3Bパラメータのみを用いたチャート理解のための効率的なMLLMであるTinyChartを提案する。
TinyChartは,1)プログラム・オブ・ソート(PoT)学習戦略による数値計算学習の負担軽減,2)ビジョン・トーケン・マージ・モジュールによる高解像度画像のためのビジョン・トランスフォーマーによって生成される長大な視覚特徴系列の削減という,効率的なチャート理解における2つの課題を克服した。
論文 参考訳(メタデータ) (2024-04-25T14:23:24Z) - ChartAssisstant: A Universal Chart Multimodal Language Model via
Chart-to-Table Pre-training and Multitask Instruction Tuning [54.89249749894061]
ChartAssistantは、ユニバーサルチャートの理解と推論のためのビジョン言語モデルである。
2段階のトレーニングプロセスを経て、チャートとテキストの調整のために、チャートからテーブルへのパースを事前トレーニングする。
実験により, 最先端UniChart法とChartllama法に比較して, 顕著な性能向上が得られた。
論文 参考訳(メタデータ) (2024-01-04T17:51:48Z) - ChartLlama: A Multimodal LLM for Chart Understanding and Generation [70.1393163657813]
GPT-4を利用した高品質な命令チューニングデータセットを作成する。
次に、生成したデータセットを使ってトレーニングしたマルチモーダルな大規模言語モデルであるChartLlamaを紹介します。
論文 参考訳(メタデータ) (2023-11-27T15:20:23Z) - UniChart: A Universal Vision-language Pretrained Model for Chart
Comprehension and Reasoning [29.947053208614246]
We present UniChart, a pretrained model for chart comprehension and reasoning。
UniChartは、チャートの関連するテキスト、データ、および視覚要素をエンコードし、その後、チャートグラウンドのテキストデコーダを使用して、自然言語で期待される出力を生成する。
i) チャートから視覚要素(バーや線など)とデータを抽出する低レベルタスク、(ii) チャート理解と推論のスキルを得るための高レベルタスクなどである。
論文 参考訳(メタデータ) (2023-05-24T06:11:17Z) - ChartReader: A Unified Framework for Chart Derendering and Comprehension
without Heuristic Rules [89.75395046894809]
ChartReaderは、チャートのデレンダリングと理解タスクをシームレスに統合する統合フレームワークです。
提案手法には,トランスフォーマーに基づくチャートコンポーネント検出モジュールと,チャートからXまでのタスクに対する事前学習型視覚言語モデルが組み込まれている。
提案するフレームワークは,チャート解析に係わる作業を大幅に削減し,ユニバーサルチャート理解モデルへの一歩を踏み出すことができる。
論文 参考訳(メタデータ) (2023-04-05T00:25:27Z) - Chart-to-Text: A Large-Scale Benchmark for Chart Summarization [9.647079534077472]
2つのデータセットと44,096のチャートを持つ大規模ベンチマークであるChart-to-textを提示する。
データセット構築プロセスを説明し、データセットを解析する。
論文 参考訳(メタデータ) (2022-03-12T17:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。