Online Estimation with Rolling Validation: Adaptive Nonparametric Estimation with Streaming Data
- URL: http://arxiv.org/abs/2310.12140v2
- Date: Thu, 4 Apr 2024 17:15:20 GMT
- Title: Online Estimation with Rolling Validation: Adaptive Nonparametric Estimation with Streaming Data
- Authors: Tianyu Zhang, Jing Lei,
- Abstract summary: We propose a weighted rolling-validation procedure, an online variant of leave-one-out cross-validation.
Similar to batch cross-validation, it can boost base estimators to achieve a better, adaptive convergence rate.
- Score: 13.069717985067937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Online nonparametric estimators are gaining popularity due to their efficient computation and competitive generalization abilities. An important example includes variants of stochastic gradient descent. These algorithms often take one sample point at a time and instantly update the parameter estimate of interest. In this work we consider model selection and hyperparameter tuning for such online algorithms. We propose a weighted rolling-validation procedure, an online variant of leave-one-out cross-validation, that costs minimal extra computation for many typical stochastic gradient descent estimators. Similar to batch cross-validation, it can boost base estimators to achieve a better, adaptive convergence rate. Our theoretical analysis is straightforward, relying mainly on some general statistical stability assumptions. The simulation study underscores the significance of diverging weights in rolling validation in practice and demonstrates its sensitivity even when there is only a slim difference between candidate estimators.
Related papers
- Nearest Neighbor Sampling for Covariate Shift Adaptation [7.940293148084844]
We propose a new covariate shift adaptation method which avoids estimating the weights.
The basic idea is to directly work on unlabeled target data, labeled according to the $k$-nearest neighbors in the source dataset.
Our experiments show that it achieves drastic reduction in the running time with remarkable accuracy.
arXiv Detail & Related papers (2023-12-15T17:28:09Z) - Leveraging Variational Autoencoders for Parameterized MMSE Estimation [10.141454378473972]
We propose a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator.
The derived estimator is shown to approximate the minimum mean squared error estimator by utilizing the variational autoencoder as a generative prior for the estimation problem.
We conduct a rigorous analysis by bounding the difference between the proposed and the minimum mean squared error estimator.
arXiv Detail & Related papers (2023-07-11T15:41:34Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient
Estimator [93.05919133288161]
We show that the variance of the straight-through variant of the popular Gumbel-Softmax estimator can be reduced through Rao-Blackwellization.
This provably reduces the mean squared error.
We empirically demonstrate that this leads to variance reduction, faster convergence, and generally improved performance in two unsupervised latent variable models.
arXiv Detail & Related papers (2020-10-09T22:54:38Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Nonparametric Score Estimators [49.42469547970041]
Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
arXiv Detail & Related papers (2020-05-20T15:01:03Z) - Towards new cross-validation-based estimators for Gaussian process
regression: efficient adjoint computation of gradients [0.0]
We suggest using new cross-validation criteria derived from the literature of scoring rules.
We also provide an efficient method for computing the gradient of a cross-validation criterion.
arXiv Detail & Related papers (2020-02-26T14:50:54Z) - On Low-rank Trace Regression under General Sampling Distribution [9.699586426043885]
We show that cross-validated estimators satisfy near-optimal error bounds on general assumptions.
We also show that the cross-validated estimator outperforms the theory-inspired approach of selecting the parameter.
arXiv Detail & Related papers (2019-04-18T02:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.