Nearest Neighbor Sampling for Covariate Shift Adaptation
- URL: http://arxiv.org/abs/2312.09969v2
- Date: Fri, 28 Jun 2024 15:10:53 GMT
- Title: Nearest Neighbor Sampling for Covariate Shift Adaptation
- Authors: François Portier, Lionel Truquet, Ikko Yamane,
- Abstract summary: We propose a new covariate shift adaptation method which avoids estimating the weights.
The basic idea is to directly work on unlabeled target data, labeled according to the $k$-nearest neighbors in the source dataset.
Our experiments show that it achieves drastic reduction in the running time with remarkable accuracy.
- Score: 7.940293148084844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many existing covariate shift adaptation methods estimate sample weights given to loss values to mitigate the gap between the source and the target distribution. However, estimating the optimal weights typically involves computationally expensive matrix inversion and hyper-parameter tuning. In this paper, we propose a new covariate shift adaptation method which avoids estimating the weights. The basic idea is to directly work on unlabeled target data, labeled according to the $k$-nearest neighbors in the source dataset. Our analysis reveals that setting $k = 1$ is an optimal choice. This property removes the necessity of tuning the only hyper-parameter $k$ and leads to a running time quasi-linear in the sample size. Our results include sharp rates of convergence for our estimator, with a tight control of the mean square error and explicit constants. In particular, the variance of our estimators has the same rate of convergence as for standard parametric estimation despite their non-parametric nature. The proposed estimator shares similarities with some matching-based treatment effect estimators used, e.g., in biostatistics, econometrics, and epidemiology. Our experiments show that it achieves drastic reduction in the running time with remarkable accuracy.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Variance Reduction for the Independent Metropolis Sampler [11.074080383657453]
We prove that if $pi$ is close enough under KL divergence to another density $q$, an independent sampler that obtains samples from $pi$ achieves smaller variance than i.i.d. sampling from $pi$.
We propose an adaptive independent Metropolis algorithm that adapts the proposal density such that its KL divergence with the target is being reduced.
arXiv Detail & Related papers (2024-06-25T16:38:53Z) - Contextual Optimization under Covariate Shift: A Robust Approach by Intersecting Wasserstein Balls [18.047245099229325]
We propose a distributionally robust approach that uses an ambiguity set by the intersection of two Wasserstein balls.
We demonstrate the strong empirical performance of our proposed models.
arXiv Detail & Related papers (2024-06-04T15:46:41Z) - TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression [109.69084997173196]
Deepscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood.
Recent works show that this may result in sub-optimal convergence due to the challenges associated with covariance estimation.
We study two questions: (1) Does the predicted covariance truly capture the randomness of the predicted mean?
Our results show that not only does TIC accurately learn the covariance, it additionally facilitates an improved convergence of the negative log-likelihood.
arXiv Detail & Related papers (2023-10-29T09:54:03Z) - Double Debiased Covariate Shift Adaptation Robust to Density-Ratio Estimation [7.8856737627153874]
We propose a doubly robust estimator for covariate shift adaptation via importance weighting.
Our estimator reduces the bias arising from the density ratio estimation errors.
Notably, our estimator remains consistent if either the density ratio estimator or the regression function is consistent.
arXiv Detail & Related papers (2023-10-25T13:38:29Z) - Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry [0.0]
We introduce a multi-fidelity estimator of covariance matrices that employs the log-Euclidean geometry of the symmetric positive-definite manifold.
We develop an optimal sample allocation scheme that minimizes the mean-squared error of the estimator given a fixed budget.
Evaluations of our approach using data from physical applications demonstrate more accurate metric learning and speedups of more than one order of magnitude compared to benchmarks.
arXiv Detail & Related papers (2023-01-31T16:33:46Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement.
We show that our estimator can be derived as the Rao-Blackwellization of three different estimators.
arXiv Detail & Related papers (2020-02-14T14:15:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.