Closed-Form Diffusion Models
- URL: http://arxiv.org/abs/2310.12395v2
- Date: Sun, 26 Jan 2025 17:07:51 GMT
- Title: Closed-Form Diffusion Models
- Authors: Christopher Scarvelis, Haitz Sáez de Ocáriz Borde, Justin Solomon,
- Abstract summary: Score-based generative models (SGMs) sample from a target distribution by iteratively transforming noise using the score function of the target.
For any finite training set, this score function can be evaluated in closed form, but the resulting SGM memorizes its training data and does not generate novel samples.
We propose an efficient nearest-neighbor-based estimator of its score function.
- Score: 14.20871291924173
- License:
- Abstract: Score-based generative models (SGMs) sample from a target distribution by iteratively transforming noise using the score function of the perturbed target. For any finite training set, this score function can be evaluated in closed form, but the resulting SGM memorizes its training data and does not generate novel samples. In practice, one approximates the score by training a neural network via score-matching. The error in this approximation promotes generalization, but neural SGMs are costly to train and sample, and the effective regularization this error provides is not well-understood theoretically. In this work, we instead explicitly smooth the closed-form score to obtain an SGM that generates novel samples without training. We analyze our model and propose an efficient nearest-neighbor-based estimator of its score function. Using this estimator, our method achieves competitive sampling times while running on consumer-grade CPUs.
Related papers
- Dimension-free Score Matching and Time Bootstrapping for Diffusion Models [11.743167854433306]
Diffusion models generate samples by estimating the score function of the target distribution at various noise levels.
In this work, we establish the first (nearly) dimension-free sample bounds complexity for learning these score functions.
A key aspect of our analysis is the use of a single function approximator to jointly estimate scores across noise levels.
arXiv Detail & Related papers (2025-02-14T18:32:22Z) - The Unreasonable Effectiveness of Gaussian Score Approximation for Diffusion Models and its Applications [1.8416014644193066]
We compare learned neural scores to the scores of two kinds of analytically tractable distributions.
We claim that the learned neural score is dominated by its linear (Gaussian) approximation for moderate to high noise scales.
We show that this allows the skipping of the first 15-30% of sampling steps while maintaining high sample quality.
arXiv Detail & Related papers (2024-12-12T21:31:27Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Score Mismatching for Generative Modeling [4.413162309652114]
We propose a new score-based model with one-step sampling.
We train a standalone generator to compress all the time steps with the gradient backpropagated from the score network.
In order to produce meaningful gradients for the generator, the score network is trained to simultaneously match the real data distribution and mismatch the fake data distribution.
arXiv Detail & Related papers (2023-09-20T03:47:12Z) - Collapsed Inference for Bayesian Deep Learning [36.1725075097107]
We introduce a novel collapsed inference scheme that performs Bayesian model averaging using collapsed samples.
A collapsed sample represents uncountably many models drawn from the approximate posterior.
Our proposed use of collapsed samples achieves a balance between scalability and accuracy.
arXiv Detail & Related papers (2023-06-16T08:34:42Z) - Consistent Diffusion Models: Mitigating Sampling Drift by Learning to be
Consistent [97.64313409741614]
We propose to enforce a emphconsistency property which states that predictions of the model on its own generated data are consistent across time.
We show that our novel training objective yields state-of-the-art results for conditional and unconditional generation in CIFAR-10 and baseline improvements in AFHQ and FFHQ.
arXiv Detail & Related papers (2023-02-17T18:45:04Z) - Proposal of a Score Based Approach to Sampling Using Monte Carlo
Estimation of Score and Oracle Access to Target Density [0.0]
Score based approaches to sampling have much success as a generative approach to produce new samples from a target density given a pool of initial samples.
We consider if we have no initial target black box model shown, but rather $0th$ and $1st.
arXiv Detail & Related papers (2022-12-06T20:56:39Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.