論文の概要: Enhanced Local Explainability and Trust Scores with Random Forest Proximities
- arxiv url: http://arxiv.org/abs/2310.12428v2
- Date: Thu, 1 Aug 2024 17:38:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-02 14:55:39.148236
- Title: Enhanced Local Explainability and Trust Scores with Random Forest Proximities
- Title(参考訳): 森林確率による地域説明可能性の向上と信頼スコア
- Authors: Joshua Rosaler, Dhruv Desai, Bhaskarjit Sarmah, Dimitrios Vamvourellis, Deran Onay, Dhagash Mehta, Stefano Pasquali,
- Abstract要約: 我々は任意のランダム森林回帰モデルと分類モデルを適応重み付きK近傍モデルとして数学的に定式化できるという事実を利用する。
この線形性は、トレーニングセットの観測における任意のモデル予測に対する属性を生成するRF予測の局所的な説明可能性を促進する。
本稿では, モデル予測だけでなく, サンプル外性能を説明するために, SHAPと組み合わせて, この近接性に基づく説明可能性のアプローチをいかに活用できるかを示す。
- 参考スコア(独自算出の注目度): 0.9423257767158634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We initiate a novel approach to explain the predictions and out of sample performance of random forest (RF) regression and classification models by exploiting the fact that any RF can be mathematically formulated as an adaptive weighted K nearest-neighbors model. Specifically, we employ a recent result that, for both regression and classification tasks, any RF prediction can be rewritten exactly as a weighted sum of the training targets, where the weights are RF proximities between the corresponding pairs of data points. We show that this linearity facilitates a local notion of explainability of RF predictions that generates attributions for any model prediction across observations in the training set, and thereby complements established feature-based methods like SHAP, which generate attributions for a model prediction across input features. We show how this proximity-based approach to explainability can be used in conjunction with SHAP to explain not just the model predictions, but also out-of-sample performance, in the sense that proximities furnish a novel means of assessing when a given model prediction is more or less likely to be correct. We demonstrate this approach in the modeling of US corporate bond prices and returns in both regression and classification cases.
- Abstract(参考訳): 我々は,任意のRFを適応重み付きK近傍モデルとして数学的に定式化できるという事実を利用して,ランダム森林回帰モデルと分類モデルの予測とサンプル性能を説明する新しいアプローチを開始した。
具体的には、回帰タスクと分類タスクの両方において、どのRF予測もトレーニング対象の重み付けの和として正確に書き換えることができる。
この線形性は、トレーニングセットにおける観測におけるモデル予測の属性を生成するRF予測の局所的な説明可能性を促進し、入力特徴間のモデル予測の属性を生成するSHAPのような確立された特徴ベースの手法を補完することを示す。
本稿では, モデル予測だけでなく, モデル予測の正しさが比較的低い場合に, 確率が新たな評価手段を提供するという意味で, モデル予測だけでなく, サンプル外性能を説明するために, SHAPと組み合わせて, この近接性に基づく説明可能性のアプローチをいかに活用できるかを示す。
我々は、米国の社債価格のモデリングにおいてこのアプローチを実証し、レグレッションと分類の両方のケースでリターンを示す。
関連論文リスト
- Simplifying Random Forests' Probabilistic Forecasts [1.534667887016089]
ランダムフォレスト(RF)は分類と回帰の両方に有用であることが証明されている。
本稿では,RFを用いた予測分布の簡易化について検討する。
既存のRFモデルを再訓練することなく、任意の予測タスクに適用することができる。
論文 参考訳(メタデータ) (2024-08-22T12:20:17Z) - Improving Explainability of Softmax Classifiers Using a Prototype-Based Joint Embedding Method [0.0]
本稿では,ソフトマックス分類器の説明可能性向上のための試作手法を提案する。
モデルアーキテクチャの変更とトレーニングにより、予測に寄与する原型例のサンプル化が可能となる。
我々は、ソフトマックスの信頼性よりも分布データから検出できる不確実性の指標を得る。
論文 参考訳(メタデータ) (2024-07-02T13:59:09Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Nearest Neighbour Score Estimators for Diffusion Generative Models [16.189734871742743]
トレーニングセットから複数のサンプルを抽出し,推定値の分散を劇的に低減する新しい近傍スコア関数推定器を提案する。
拡散モデルでは,確率フローODE統合のための学習ネットワークを推定器で置き換えることができ,将来的な研究の新たな道が開かれる。
論文 参考訳(メタデータ) (2024-02-12T19:27:30Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA)は、モデルがターゲットのドメインラベルやソースドメインデータにアクセスせずに新しいドメインに適応する必要がある、という課題である。
本稿では,各サンプルについて複数の予測仮説を考察し,各仮説の背景にある理論的根拠について考察する。
最適性能を達成するために,モデル事前適応,仮説統合,半教師付き学習という3段階の適応プロセスを提案する。
論文 参考訳(メタデータ) (2024-02-02T05:53:22Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
実例が少ない事前学習言語モデルはラベル間に強い予測バイアスを示すことを示す。
わずかな微調整で予測バイアスを軽減できるが,本分析では,非タスク関連の特徴を捉えることで,モデルの性能向上を図っている。
これらの観察は、より少ない例でモデルのパフォーマンスを追求することは、病理学的予測行動を引き起こす可能性があることを警告する。
論文 参考訳(メタデータ) (2022-04-17T15:55:18Z) - Uncertainty estimation under model misspecification in neural network
regression [3.2622301272834524]
モデル選択が不確実性評価に与える影響について検討する。
モデルミスセグメンテーションでは,アレータリック不確実性は適切に捉えられていない。
論文 参考訳(メタデータ) (2021-11-23T10:18:41Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z) - Gaussian Process Regression with Local Explanation [28.90948136731314]
本稿では,各サンプルの予測に寄与する特徴を明らかにするため,局所的な説明を伴うGPRを提案する。
提案モデルでは,各サンプルの予測と説明を,容易に解釈可能な局所線形モデルを用いて行う。
新しい試験サンプルでは, 対象変数と重みベクトルの値と不確かさを予測できる。
論文 参考訳(メタデータ) (2020-07-03T13:22:24Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。