Not Just Learning from Others but Relying on Yourself: A New Perspective
on Few-Shot Segmentation in Remote Sensing
- URL: http://arxiv.org/abs/2310.12452v1
- Date: Thu, 19 Oct 2023 04:09:10 GMT
- Title: Not Just Learning from Others but Relying on Yourself: A New Perspective
on Few-Shot Segmentation in Remote Sensing
- Authors: Hanbo Bi, Yingchao Feng, Zhiyuan Yan, Yongqiang Mao, Wenhui Diao,
Hongqi Wang, and Xian Sun
- Abstract summary: Few-shot segmentation (FSS) is proposed to segment unknown class targets with just a few annotated samples.
We develop a Dual-Mining network named DMNet for cross-image mining and self-mining.
Our model with the backbone of Resnet-50 achieves the mIoU of 49.58% and 51.34% on iSAID under 1-shot and 5-shot settings.
- Score: 14.37799301656178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot segmentation (FSS) is proposed to segment unknown class targets with
just a few annotated samples. Most current FSS methods follow the paradigm of
mining the semantics from the support images to guide the query image
segmentation. However, such a pattern of `learning from others' struggles to
handle the extreme intra-class variation, preventing FSS from being directly
generalized to remote sensing scenes. To bridge the gap of intra-class
variance, we develop a Dual-Mining network named DMNet for cross-image mining
and self-mining, meaning that it no longer focuses solely on support images but
pays more attention to the query image itself. Specifically, we propose a
Class-public Region Mining (CPRM) module to effectively suppress irrelevant
feature pollution by capturing the common semantics between the support-query
image pair. The Class-specific Region Mining (CSRM) module is then proposed to
continuously mine the class-specific semantics of the query image itself in a
`filtering' and `purifying' manner. In addition, to prevent the co-existence of
multiple classes in remote sensing scenes from exacerbating the collapse of FSS
generalization, we also propose a new Known-class Meta Suppressor (KMS) module
to suppress the activation of known-class objects in the sample. Extensive
experiments on the iSAID and LoveDA remote sensing datasets have demonstrated
that our method sets the state-of-the-art with a minimum number of model
parameters. Significantly, our model with the backbone of Resnet-50 achieves
the mIoU of 49.58% and 51.34% on iSAID under 1-shot and 5-shot settings,
outperforming the state-of-the-art method by 1.8% and 1.12%, respectively. The
code is publicly available at https://github.com/HanboBizl/DMNet.
Related papers
- Self-Correlation and Cross-Correlation Learning for Few-Shot Remote
Sensing Image Semantic Segmentation [27.59330408178435]
Few-shot remote sensing semantic segmentation aims at learning to segment target objects from a query image.
We propose a Self-Correlation and Cross-Correlation Learning Network for the few-shot remote sensing image semantic segmentation.
Our model enhances the generalization by considering both self-correlation and cross-correlation between support and query images.
arXiv Detail & Related papers (2023-09-11T21:53:34Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - Masked Cross-image Encoding for Few-shot Segmentation [16.445813548503708]
Few-shot segmentation (FSS) is a dense prediction task that aims to infer the pixel-wise labels of unseen classes using only a limited number of annotated images.
We propose a joint learning method termed Masked Cross-Image MCE, which is designed to capture common visual properties that describe object details and to learn bidirectional inter-image dependencies that enhance feature interaction.
arXiv Detail & Related papers (2023-08-22T05:36:39Z) - Hierarchical Dense Correlation Distillation for Few-Shot
Segmentation-Extended Abstract [47.85056124410376]
Few-shot semantic segmentation (FSS) aims to form class-agnostic models segmenting unseen classes with only a handful of annotations.
We design Hierarchically Decoupled Matching Network (HDMNet) mining pixel-level support correlation based on the transformer architecture.
We propose a matching module to reduce train-set overfitting and introduce correlation distillation leveraging semantic correspondence from coarse resolution to boost fine-grained segmentation.
arXiv Detail & Related papers (2023-06-27T08:10:20Z) - Reflection Invariance Learning for Few-shot Semantic Segmentation [53.20466630330429]
Few-shot semantic segmentation (FSS) aims to segment objects of unseen classes in query images with only a few annotated support images.
This paper proposes a fresh few-shot segmentation framework to mine the reflection invariance in a multi-view matching manner.
Experiments on both PASCAL-$5textiti$ and COCO-$20textiti$ datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-01T15:14:58Z) - Cross-domain Few-shot Segmentation with Transductive Fine-tuning [29.81009103722184]
We propose to transductively fine-tune the base model on a set of query images under the few-shot setting.
Our method could consistently and significantly improve the performance of prototypical FSS models in all cross-domain tasks.
arXiv Detail & Related papers (2022-11-27T06:44:41Z) - Meta-DETR: Image-Level Few-Shot Detection with Inter-Class Correlation
Exploitation [100.87407396364137]
We design Meta-DETR, which (i) is the first image-level few-shot detector, and (ii) introduces a novel inter-class correlational meta-learning strategy.
Experiments over multiple few-shot object detection benchmarks show that the proposed Meta-DETR outperforms state-of-the-art methods by large margins.
arXiv Detail & Related papers (2022-07-30T13:46:07Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
We introduce a new setting of Novel Class Discovery in Semantic (NCDSS)
It aims at segmenting unlabeled images containing new classes given prior knowledge from a labeled set of disjoint classes.
In NCDSS, we need to distinguish the objects and background, and to handle the existence of multiple classes within an image.
We propose the Entropy-based Uncertainty Modeling and Self-training (EUMS) framework to overcome noisy pseudo-labels.
arXiv Detail & Related papers (2021-12-03T13:31:59Z) - Learning Meta-class Memory for Few-Shot Semantic Segmentation [90.28474742651422]
We introduce the concept of meta-class, which is the meta information shareable among all classes.
We propose a novel Meta-class Memory based few-shot segmentation method (MM-Net), where we introduce a set of learnable memory embeddings.
Our proposed MM-Net achieves 37.5% mIoU on the COCO dataset in 1-shot setting, which is 5.1% higher than the previous state-of-the-art.
arXiv Detail & Related papers (2021-08-06T06:29:59Z) - Dynamic Relevance Learning for Few-Shot Object Detection [6.550840743803705]
We propose a dynamic relevance learning model, which utilizes the relationship between all support images and Region of Interest (RoI) on the query images to construct a dynamic graph convolutional network (GCN)
The proposed model achieves the best overall performance, which shows its effectiveness of learning more generalized features.
arXiv Detail & Related papers (2021-08-04T18:29:42Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
We advocate a two-step approach where feature learning and clustering are decoupled.
A self-supervised task from representation learning is employed to obtain semantically meaningful features.
We obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime.
arXiv Detail & Related papers (2020-05-25T18:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.