American Option Pricing using Self-Attention GRU and Shapley Value
Interpretation
- URL: http://arxiv.org/abs/2310.12500v1
- Date: Thu, 19 Oct 2023 06:05:46 GMT
- Title: American Option Pricing using Self-Attention GRU and Shapley Value
Interpretation
- Authors: Yanhui Shen
- Abstract summary: We propose a machine learning method for forecasting the prices of SPY (ETF) option based on gated recurrent unit (GRU) and self-attention mechanism.
We built four different machine learning models, including multilayer perceptron (MLP), long short-term memory (LSTM), self-attention LSTM, and self-attention GRU.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Options, serving as a crucial financial instrument, are used by investors to
manage and mitigate their investment risks within the securities market.
Precisely predicting the present price of an option enables investors to make
informed and efficient decisions. In this paper, we propose a machine learning
method for forecasting the prices of SPY (ETF) option based on gated recurrent
unit (GRU) and self-attention mechanism. We first partitioned the raw dataset
into 15 subsets according to moneyness and days to maturity criteria. For each
subset, we matched the corresponding U.S. government bond rates and Implied
Volatility Indices. This segmentation allows for a more insightful exploration
of the impacts of risk-free rates and underlying volatility on option pricing.
Next, we built four different machine learning models, including multilayer
perceptron (MLP), long short-term memory (LSTM), self-attention LSTM, and
self-attention GRU in comparison to the traditional binomial model. The
empirical result shows that self-attention GRU with historical data outperforms
other models due to its ability to capture complex temporal dependencies and
leverage the contextual information embedded in the historical data. Finally,
in order to unveil the "black box" of artificial intelligence, we employed the
SHapley Additive exPlanations (SHAP) method to interpret and analyze the
prediction results of the self-attention GRU model with historical data. This
provides insights into the significance and contributions of different input
features on the pricing of American-style options.
Related papers
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - Natural Language Processing and Multimodal Stock Price Prediction [0.8702432681310401]
This paper utilizes stock percentage change as training data, in contrast to the traditional use of raw currency values.
The choice of percentage change aims to provide models with context regarding the significance of price fluctuations.
The study employs specialized BERT natural language processing models to predict stock price trends.
arXiv Detail & Related papers (2024-01-03T01:21:30Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Machine Learning for Stock Prediction Based on Fundamental Analysis [13.920569652186714]
We investigate three machine learning algorithms: Feed-forward Neural Network (FNN), Random Forest (RF) and Adaptive Neural Fuzzy Inference System (ANFIS)
RF model achieves the best prediction results, and feature selection is able to improve test performance of FNN and ANFIS.
Our findings demonstrate that machine learning models could be used to aid fundamental analysts with decision-making regarding stock investment.
arXiv Detail & Related papers (2022-01-26T18:48:51Z) - Predicting Status of Pre and Post M&A Deals Using Machine Learning and
Deep Learning Techniques [0.0]
Risk arbitrage or merger arbitrage is an investment strategy that speculates on the success of M&A deals.
Prediction of the deal status in advance is of great importance for risk arbitrageurs.
We present an ML and DL based methodology for takeover success prediction problem.
arXiv Detail & Related papers (2021-08-05T21:26:45Z) - Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model [1.2891210250935146]
We present a deep learning-based regression model built on a long-and-short-term memory network (LSTM) network.
It extracts historical stock prices based on a stock's ticker name for a specified pair of start and end dates, and forecasts the future stock prices.
We deploy the model on 75 significant stocks chosen from 15 critical sectors of the Indian stock market.
arXiv Detail & Related papers (2021-04-06T11:09:51Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.