Parallel Bayesian Optimization Using Satisficing Thompson Sampling for
Time-Sensitive Black-Box Optimization
- URL: http://arxiv.org/abs/2310.12526v1
- Date: Thu, 19 Oct 2023 07:03:51 GMT
- Title: Parallel Bayesian Optimization Using Satisficing Thompson Sampling for
Time-Sensitive Black-Box Optimization
- Authors: Xiaobin Song, Benben Jiang
- Abstract summary: We propose satisficing Thompson sampling-based parallel BO approaches, including synchronous and asynchronous versions.
We shift the target from an optimal solution to a satisficing solution that is easier to learn.
The effectiveness of the proposed methods is demonstrated on a fast-charging design problem of Lithium-ion batteries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Bayesian optimization (BO) is widely used for black-box optimization
problems, and have been shown to perform well in various real-world tasks.
However, most of the existing BO methods aim to learn the optimal solution,
which may become infeasible when the parameter space is extremely large or the
problem is time-sensitive. In these contexts, switching to a satisficing
solution that requires less information can result in better performance. In
this work, we focus on time-sensitive black-box optimization problems and
propose satisficing Thompson sampling-based parallel Bayesian optimization
(STS-PBO) approaches, including synchronous and asynchronous versions. We shift
the target from an optimal solution to a satisficing solution that is easier to
learn. The rate-distortion theory is introduced to construct a loss function
that balances the amount of information that needs to be learned with
sub-optimality, and the Blahut-Arimoto algorithm is adopted to compute the
target solution that reaches the minimum information rate under the distortion
limit at each step. Both discounted and undiscounted Bayesian cumulative regret
bounds are theoretically derived for the proposed STS-PBO approaches. The
effectiveness of the proposed methods is demonstrated on a fast-charging design
problem of Lithium-ion batteries. The results are accordant with theoretical
analyses, and show that our STS-PBO methods outperform both sequential
counterparts and parallel BO with traditional Thompson sampling in both
synchronous and asynchronous settings.
Related papers
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
This paper reveals a unified game-theoretic connection between iterative BOND and self-play alignment.
We establish a novel framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate dominance optimization.
arXiv Detail & Related papers (2024-10-28T04:47:39Z) - Principled Preferential Bayesian Optimization [22.269732173306192]
We study the problem of preferential Bayesian optimization (BO)
We aim to optimize a black-box function with only preference feedback over a pair of candidate solutions.
An optimistic algorithm with an efficient computational method is then developed to solve the problem.
arXiv Detail & Related papers (2024-02-08T02:57:47Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - SnAKe: Bayesian Optimization with Pathwise Exploration [9.807656882149319]
We consider a novel setting where the expense of evaluating the function can increase significantly when making large input changes between iterations.
This paper investigates the problem and introduces 'Sequential Bayesian Optimization via Adaptive Connecting Samples' (SnAKe)
It provides a solution by considering future queries and preemptively building optimization paths that minimize input costs.
arXiv Detail & Related papers (2022-01-31T19:42:56Z) - LinEasyBO: Scalable Bayesian Optimization Approach for Analog Circuit
Synthesis via One-Dimensional Subspaces [11.64233949999656]
We propose a fast and robust Bayesian optimization approach via one-dimensional subspaces for analog circuit synthesis.
Our proposed algorithm can accelerate the optimization procedure by up to 9x and 38x compared to LP-EI and REMBOpBO respectively when the batch size is 15.
arXiv Detail & Related papers (2021-09-01T21:25:25Z) - An Efficient Batch Constrained Bayesian Optimization Approach for Analog
Circuit Synthesis via Multi-objective Acquisition Ensemble [11.64233949999656]
We propose an efficient parallelizable Bayesian optimization algorithm via Multi-objective ACquisition function Ensemble (MACE)
Our proposed algorithm can reduce the overall simulation time by up to 74 times compared to differential evolution (DE) for the unconstrained optimization problem when the batch size is 15.
For the constrained optimization problem, our proposed algorithm can speed up the optimization process by up to 15 times compared to the weighted expected improvement based Bayesian optimization (WEIBO) approach, when the batch size is 15.
arXiv Detail & Related papers (2021-06-28T13:21:28Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Simple and Scalable Parallelized Bayesian Optimization [2.512827436728378]
We propose a simple and scalable BO method for asynchronous parallel settings.
Experiments are carried out with a benchmark function and hyperparameter optimization of multi-layer perceptrons.
arXiv Detail & Related papers (2020-06-24T10:25:27Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.