A reproducible 3D convolutional neural network with dual attention module (3D-DAM) for Alzheimer's disease classification
- URL: http://arxiv.org/abs/2310.12574v3
- Date: Tue, 2 Jul 2024 12:08:55 GMT
- Title: A reproducible 3D convolutional neural network with dual attention module (3D-DAM) for Alzheimer's disease classification
- Authors: Gia Minh Hoang, Youngjoo Lee, Jae Gwan Kim,
- Abstract summary: We propose a 3D convolutional neural network with a dual attention module for Alzheimer's disease classification.
We trained the model in the ADNI database and verified the generalizability of our method in two independent datasets.
- Score: 1.5566524830295307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's disease is one of the most common types of neurodegenerative disease, characterized by the accumulation of amyloid-beta plaque and tau tangles. Recently, deep learning approaches have shown promise in Alzheimer's disease diagnosis. In this study, we propose a reproducible model that utilizes a 3D convolutional neural network with a dual attention module for Alzheimer's disease classification. We trained the model in the ADNI database and verified the generalizability of our method in two independent datasets (AIBL and OASIS1). Our method achieved state-of-the-art classification performance, with an accuracy of 91.94% for MCI progression classification and 96.30% for Alzheimer's disease classification on the ADNI dataset. Furthermore, the model demonstrated good generalizability, achieving an accuracy of 86.37% on the AIBL dataset and 83.42% on the OASIS1 dataset. These results indicate that our proposed approach has competitive performance and generalizability when compared to recent studies in the field.
Related papers
- CRTRE: Causal Rule Generation with Target Trial Emulation Framework [47.2836994469923]
We introduce a novel method called causal rule generation with target trial emulation framework (CRTRE)
CRTRE applies randomize trial design principles to estimate the causal effect of association rules.
We then incorporate such association rules for the downstream applications such as prediction of disease onsets.
arXiv Detail & Related papers (2024-11-10T02:40:06Z) - AlzhiNet: Traversing from 2DCNN to 3DCNN, Towards Early Detection and Diagnosis of Alzheimer's Disease [1.6908255257928966]
We present a novel hybrid deep learning framework that integrates 2D Convolutional Neural Networks (2D-CNN) and 3D Convolutional Neural Networks (3D-CNN)
Our framework has been validated on the Magnetic Resonance Imaging (MRI) from Kaggle and MIRIAD datasets, obtaining accuracies of 98.9% and 99.99%, respectively, with an AUC of 100%.
arXiv Detail & Related papers (2024-10-03T17:37:18Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Introducing an ensemble method for the early detection of Alzheimer's disease through the analysis of PET scan images [0.8192907805418583]
This study delves into the challenging task of classifying Alzheimer's disease into four distinct groups: control normal (CN), progressive mild cognitive impairment (pMCI), stable mild cognitive impairment (sMCI), and Alzheimer's disease (AD)
Several deep-learning and traditional machine-learning models have been used to detect Alzheimer's disease.
The results show that using deep-learning models to tell the difference between MCI patients gives an overall average accuracy of 93.13% and an AUC of 94.4%.
arXiv Detail & Related papers (2024-03-17T16:12:50Z) - Intelligent Diagnosis of Alzheimer's Disease Based on Machine Learning [24.467566885575998]
This study is based on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset.
It aims to explore early detection and disease progression in Alzheimer's disease (AD)
arXiv Detail & Related papers (2024-02-13T15:43:30Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - A Machine Learning Approach for Predicting Deterioration in Alzheimer's
Disease [0.0]
This paper explores deterioration in Alzheimers Disease using Machine Learning.
Six machine learning models, including gradient boosting, were built and evaluated.
We were able to demonstrate good predictive ability using CART predicting which of those in the cognitively normal group deteriorated.
For the mild cognitive impairment group, we were able to achieve good predictive ability for deterioration with Elastic Net.
arXiv Detail & Related papers (2023-06-17T12:23:35Z) - Conformer Based Elderly Speech Recognition System for Alzheimer's
Disease Detection [62.23830810096617]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care to delay further progression.
This paper presents the development of a state-of-the-art Conformer based speech recognition system built on the DementiaBank Pitt corpus for automatic AD detection.
arXiv Detail & Related papers (2022-06-23T12:50:55Z) - Predicting Alzheimer's Disease Using 3DMgNet [2.97983501982132]
3DMgNet is a unified framework of multigrid and convolutional neural network to diagnose Alzheimer's disease (AD)
The model achieved 92.133% accuracy for AD vs NC classification and significantly reduced the model parameters.
arXiv Detail & Related papers (2022-01-12T09:08:08Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
We present a novel architecture that leverages acoustic, cognitive, and linguistic features to form a multimodal ensemble system.
It uses specialized artificial neural networks with temporal characteristics to detect Alzheimer's dementia (AD) and its severity.
Our system achieves state-of-the-art test accuracy, precision, recall, and F1-score of 83.3% each for AD classification, and state-of-the-art test root mean squared error (RMSE) of 4.60 for MMSE score regression.
arXiv Detail & Related papers (2020-08-30T21:47:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.