CRTRE: Causal Rule Generation with Target Trial Emulation Framework
- URL: http://arxiv.org/abs/2411.06338v1
- Date: Sun, 10 Nov 2024 02:40:06 GMT
- Title: CRTRE: Causal Rule Generation with Target Trial Emulation Framework
- Authors: Junda Wang, Weijian Li, Han Wang, Hanjia Lyu, Caroline P. Thirukumaran, Addisu Mesfin, Hong Yu, Jiebo Luo,
- Abstract summary: We introduce a novel method called causal rule generation with target trial emulation framework (CRTRE)
CRTRE applies randomize trial design principles to estimate the causal effect of association rules.
We then incorporate such association rules for the downstream applications such as prediction of disease onsets.
- Score: 47.2836994469923
- License:
- Abstract: Causal inference and model interpretability are gaining increasing attention, particularly in the biomedical domain. Despite recent advance, decorrelating features in nonlinear environments with human-interpretable representations remains underexplored. In this study, we introduce a novel method called causal rule generation with target trial emulation framework (CRTRE), which applies randomize trial design principles to estimate the causal effect of association rules. We then incorporate such association rules for the downstream applications such as prediction of disease onsets. Extensive experiments on six healthcare datasets, including synthetic data, real-world disease collections, and MIMIC-III/IV, demonstrate the model's superior performance. Specifically, our method achieved a $\beta$ error of 0.907, outperforming DWR (1.024) and SVM (1.141). On real-world datasets, our model achieved accuracies of 0.789, 0.920, and 0.300 for Esophageal Cancer, Heart Disease, and Cauda Equina Syndrome prediction task, respectively, consistently surpassing baseline models. On the ICD code prediction tasks, it achieved AUC Macro scores of 92.8 on MIMIC-III and 96.7 on MIMIC-IV, outperforming the state-of-the-art models KEPT and MSMN. Expert evaluations further validate the model's effectiveness, causality, and interpretability.
Related papers
- Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - CEL: A Continual Learning Model for Disease Outbreak Prediction by
Leveraging Domain Adaptation via Elastic Weight Consolidation [4.693707128262634]
This study introduces a novel CEL model for continual learning by leveraging domain adaptation via Elastic Weight Consolidation (EWC)
CEL's robustness and reliability are underscored by its minimal 65% forgetting rate and 18% higher memory stability compared to existing benchmark studies.
arXiv Detail & Related papers (2024-01-17T03:26:04Z) - Performance of externally validated machine learning models based on
histopathology images for the diagnosis, classification, prognosis, or
treatment outcome prediction in female breast cancer: A systematic review [0.5792122879054292]
externally validated machine learning models for diagnosis, classification, prognosis, or treatment outcome prediction in female breast cancer.
Three studies externally validated ML models for diagnosis, 4 for classification, 2 for prognosis, and 1 for both classification and prognosis.
Most studies used Convolutional Neural Networks and one used logistic regression algorithms.
arXiv Detail & Related papers (2023-12-09T18:27:56Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Forecasting the Spread of Covid-19 Under Control Scenarios Using LSTM
and Dynamic Behavioral Models [2.11622808613962]
This study proposes a novel hybrid model which combines a Long short-term memory (LSTM) artificial recurrent neural network with dynamic behavioral models.
The proposed model considers the effect of multiple factors to enhance the accuracy in predicting the number of cases and deaths across the top ten most-affected countries and Australia.
arXiv Detail & Related papers (2020-05-24T10:43:55Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
Elderly patients with MODS have high risk of death and poor prognosis.
This study aims to develop an interpretable and generalizable model for early mortality prediction in elderly patients with MODS.
arXiv Detail & Related papers (2020-01-28T17:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.