Neural networks for insurance pricing with frequency and severity data: a benchmark study from data preprocessing to technical tariff
- URL: http://arxiv.org/abs/2310.12671v3
- Date: Thu, 22 Aug 2024 10:15:22 GMT
- Title: Neural networks for insurance pricing with frequency and severity data: a benchmark study from data preprocessing to technical tariff
- Authors: Freek Holvoet, Katrien Antonio, Roel Henckaerts,
- Abstract summary: We present a benchmark study on four insurance data sets with frequency and severity targets in the presence of multiple types of input features.
We compare in detail the performance of a generalized linear model on binned input data, a gradient-boosted tree model, a feed-forward neural network (FFNN), and the combined actuarial neural network (CANN)
- Score: 2.4578723416255754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Insurers usually turn to generalized linear models for modeling claim frequency and severity data. Due to their success in other fields, machine learning techniques are gaining popularity within the actuarial toolbox. Our paper contributes to the literature on frequency-severity insurance pricing with machine learning via deep learning structures. We present a benchmark study on four insurance data sets with frequency and severity targets in the presence of multiple types of input features. We compare in detail the performance of: a generalized linear model on binned input data, a gradient-boosted tree model, a feed-forward neural network (FFNN), and the combined actuarial neural network (CANN). The CANNs combine a baseline prediction established with a GLM and GBM, respectively, with a neural network correction. We explain the data preprocessing steps with specific focus on the multiple types of input features typically present in tabular insurance data sets, such as postal codes, numeric and categorical covariates. Autoencoders are used to embed the categorical variables into the neural network, and we explore their potential advantages in a frequency-severity setting. Model performance is evaluated not only on out-of-sample deviance but also using statistical and calibration performance criteria and managerial tools to get more nuanced insights. Finally, we construct global surrogate models for the neural nets' frequency and severity models. These surrogates enable the translation of the essential insights captured by the FFNNs or CANNs to GLMs. As such, a technical tariff table results that can easily be deployed in practice.
Related papers
- Multi-Scale Convolutional LSTM with Transfer Learning for Anomaly Detection in Cellular Networks [1.1432909951914676]
This study introduces a novel approach Multi-Scale Convolutional LSTM with Transfer Learning (TL) to detect anomalies in cellular networks.
The model is initially trained from scratch using a publicly available dataset to learn typical network behavior.
We compare the performance of the model trained from scratch with that of the fine-tuned model using TL.
arXiv Detail & Related papers (2024-09-30T17:51:54Z) - Explainable AI for Comparative Analysis of Intrusion Detection Models [20.683181384051395]
This research analyzes various machine learning models to the tasks of binary and multi-class classification for intrusion detection from network traffic.
We trained all models to the accuracy of 90% on the UNSW-NB15 dataset.
We also discover that Random Forest provides the best performance in terms of accuracy, time efficiency and robustness.
arXiv Detail & Related papers (2024-06-14T03:11:01Z) - Few-shot Learning using Data Augmentation and Time-Frequency
Transformation for Time Series Classification [6.830148185797109]
We propose a novel few-shot learning framework through data augmentation.
We also develop a sequence-spectrogram neural network (SSNN)
Our methodology demonstrates its applicability of addressing the few-shot problems for time series classification.
arXiv Detail & Related papers (2023-11-06T15:32:50Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Detection of Interacting Variables for Generalized Linear Models via
Neural Networks [0.0]
We present an approach to automating the process of finding interactions that should be added to generalized linear models (GLMs)
Our approach relies on neural networks and a model-specific interaction detection method, which is computationally faster than the traditionally used methods like Friedman H-Statistic or SHAP values.
In numerical studies, we provide the results of our approach on artificially generated data as well as open-source data.
arXiv Detail & Related papers (2022-09-16T16:16:45Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.