論文の概要: Case-level Breast Cancer Prediction for Real Hospital Settings
- arxiv url: http://arxiv.org/abs/2310.12677v2
- Date: Sat, 19 Oct 2024 15:09:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:12:24.600936
- Title: Case-level Breast Cancer Prediction for Real Hospital Settings
- Title(参考訳): 実検例における症例レベル乳癌の予測
- Authors: Shreyasi Pathak, Jörg Schlötterer, Jeroen Geerdink, Jeroen Veltman, Maurice van Keulen, Nicola Strisciuglio, Christin Seifert,
- Abstract要約: 我々は,手動のアノテーションを必要としない症例レベルの乳癌予測のためのフレームワークを開発し,病院で手軽に利用できる症例ラベルを用いて訓練することができる。
具体的には,症例レベルの乳癌予測のためのパッチレベルと画像レベルでの2レベルマルチインスタンス学習(MIL)アプローチを提案する。
この2レベルMILモデルは,ケースラベルとケース毎の画像数のみを使用可能な,実際の病院環境において適用可能であることを示す。
- 参考スコア(独自算出の注目度): 4.248393497787407
- License:
- Abstract: Breast cancer prediction models for mammography assume that annotations are available for individual images or regions of interest (ROIs), and that there is a fixed number of images per patient. These assumptions do not hold in real hospital settings, where clinicians provide only a final diagnosis for the entire mammography exam (case). Since data in real hospital settings scales with continuous patient intake, while manual annotation efforts do not, we develop a framework for case-level breast cancer prediction that does not require any manual annotation and can be trained with case labels readily available at the hospital. Specifically, we propose a two-level multi-instance learning (MIL) approach at patch and image level for case-level breast cancer prediction and evaluate it on two public and one private dataset. We propose a novel domain-specific MIL pooling observing that breast cancer may or may not occur in both sides, while images of both breasts are taken as a precaution during mammography. We propose a dynamic training procedure for training our MIL framework on a variable number of images per case. We show that our two-level MIL model can be applied in real hospital settings where only case labels, and a variable number of images per case are available, without any loss in performance compared to models trained on image labels. Only trained with weak (case-level) labels, it has the capability to point out in which breast side, mammography view and view region the abnormality lies.
- Abstract(参考訳): マンモグラフィーの乳がん予測モデルでは、アノテーションは個々の画像や関心領域(ROI)で利用可能であり、患者1人当たりの画像数は一定である。
これらの仮定は、臨床医がマンモグラフィー検査全体(ケース)の最終的な診断のみを行う、実際の病院環境では成立しない。
本研究は,手動による乳がん予測のための枠組みを構築し,手動による診断を必要とせず,病院で手軽に利用できる症例ラベルで訓練することができる。
具体的には,症例レベルの乳癌予測のためのパッチと画像レベルでの2レベルマルチインスタンス学習(MIL)アプローチを提案し,それを2つのパブリックデータセットと1つのプライベートデータセットで評価する。
本研究は,乳がんが両側に発生するか,発生しないかを観察し,乳房画像は乳房造影で予防される新しい領域特異的MILプール法を提案する。
本稿では,MILフレームワークをケース毎に可変数の画像に基づいてトレーニングするための動的トレーニング手法を提案する。
この2段階のMILモデルは,ケースラベルとケース毎の画像数が異なる実際の病院環境において,画像ラベルで訓練したモデルと比較して,性能が損なわれることなく適用可能であることを示す。
弱い(ケースレベルの)ラベルでしか訓練されないが、乳房側、マンモグラフィー、および異常領域がどこにあるかを指摘する能力がある。
関連論文リスト
- Panoptic Segmentation of Mammograms with Text-To-Image Diffusion Model [1.2130800774416757]
視覚言語拡散モデルは、様々な下流タスクに対する画像生成と転送性において顕著な性能を示した。
本稿では,安定拡散モデルから最新のパン光学セグメントアーキテクチャへの入力として,事前学習した特徴を活用することを提案する。
論文 参考訳(メタデータ) (2024-07-19T14:04:05Z) - Breast Ultrasound Report Generation using LangChain [58.07183284468881]
本稿では,Large Language Models (LLM) を用いたLangChainによる複数の画像解析ツールを胸部報告プロセスに統合することを提案する。
本手法は,超音波画像から関連する特徴を正確に抽出し,臨床的文脈で解釈し,包括的で標準化された報告を生成する。
論文 参考訳(メタデータ) (2023-12-05T00:28:26Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - VinDr-Mammo: A large-scale benchmark dataset for computer-aided
diagnosis in full-field digital mammography [0.5452925161262461]
VinDr-Mammoはフルフィールドデジタルマンモグラフィー(FFDM)の新しいベンチマークデータセットである
データセットは5000のマンモグラフィー試験で構成され、それぞれが4つの標準ビューを持ち、意見の相違を伴って読み上げられている。
乳房画像報告・データシステム(BI-RADS)と乳房レベルの密度を評価するために作成される。
論文 参考訳(メタデータ) (2022-03-20T18:17:42Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Convolutional-LSTM for Multi-Image to Single Output Medical Prediction [55.41644538483948]
発展途上国の一般的なシナリオは、複数の理由からボリュームメタデータが失われることである。
ヒトの診断過程を模倣したマルチイメージから単一診断モデルを得ることが可能である。
論文 参考訳(メタデータ) (2020-10-20T04:30:09Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
論文 参考訳(メタデータ) (2020-05-29T21:23:00Z) - A Two-Stage Multiple Instance Learning Framework for the Detection of
Breast Cancer in Mammograms [13.842620686759616]
乳がんの大規模検診ではマンモグラムが一般的に用いられる。
画像レベルの悪性度検出のための2段階多段階学習フレームワークを提案する。
グローバルなイメージレベル機能は、CNNで学んだパッチレベル機能の重み付け平均として計算される。
画像レベルの分類では, 平均精度が0.76/0.80, 平均AUCが0.91であった。
論文 参考訳(メタデータ) (2020-04-24T13:06:47Z) - Understanding the robustness of deep neural network classifiers for
breast cancer screening [52.50078591615855]
ディープニューラルネットワーク(DNN)は乳がん検診において有望であるが、その入力摂動に対する堅牢性は臨床的に実装される前によりよく理解する必要がある。
放射線技師レベルのマンモグラム画像分類器の4種類の入力摂動に対する感度を測定した。
また,低域通過フィルタの効果について詳細な解析を行い,臨床的に有意な特徴の視認性を低下させることを示した。
論文 参考訳(メタデータ) (2020-03-23T01:26:36Z) - Two-stage multi-scale breast mass segmentation for full mammogram
analysis without user intervention [2.7490008316742096]
マンモグラフィーは乳がんの早期発見と診断に使用される主要な画像モダリティである。
各種の乳腺異常のうち,乳腺癌では腫瘤が最も重要な臨床所見である。
高分解能フルマンモグラムから正確な質量輪郭を提供する2段階のマルチスケールパイプラインを提案する。
論文 参考訳(メタデータ) (2020-02-27T13:16:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。