Mask-conditioned latent diffusion for generating gastrointestinal polyp
images
- URL: http://arxiv.org/abs/2304.05233v1
- Date: Tue, 11 Apr 2023 14:11:17 GMT
- Title: Mask-conditioned latent diffusion for generating gastrointestinal polyp
images
- Authors: Roman Mach\'a\v{c}ek, Leila Mozaffari, Zahra Sepasdar, Sravanthi
Parasa, P{\aa}l Halvorsen, Michael A. Riegler, Vajira Thambawita
- Abstract summary: This study proposes a conditional DPM framework to generate synthetic GI polyp images conditioned on given segmentation masks.
Our system can generate an unlimited number of high-fidelity synthetic polyp images with the corresponding ground truth masks of polyps.
Results show that the best micro-imagewise IOU of 0.7751 was achieved from DeepLabv3+ when the training data consists of both real data and synthetic data.
- Score: 2.027538200191349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to take advantage of AI solutions in endoscopy diagnostics, we must
overcome the issue of limited annotations. These limitations are caused by the
high privacy concerns in the medical field and the requirement of getting aid
from experts for the time-consuming and costly medical data annotation process.
In computer vision, image synthesis has made a significant contribution in
recent years as a result of the progress of generative adversarial networks
(GANs) and diffusion probabilistic models (DPM). Novel DPMs have outperformed
GANs in text, image, and video generation tasks. Therefore, this study proposes
a conditional DPM framework to generate synthetic GI polyp images conditioned
on given generated segmentation masks. Our experimental results show that our
system can generate an unlimited number of high-fidelity synthetic polyp images
with the corresponding ground truth masks of polyps. To test the usefulness of
the generated data, we trained binary image segmentation models to study the
effect of using synthetic data. Results show that the best micro-imagewise IOU
of 0.7751 was achieved from DeepLabv3+ when the training data consists of both
real data and synthetic data. However, the results reflect that achieving good
segmentation performance with synthetic data heavily depends on model
architectures.
Related papers
- Medical Imaging Complexity and its Effects on GAN Performance [1.776717121506676]
Medical image synthesis via generative adversarial networks (GANs) emerged as a powerful method for synthetically generating photo-realistic images.
We experimentally establish benchmarks that measure the relationship between a sample dataset size and the fidelity of the generated images.
We conduct experiments with two state-of-the-art GANs, StyleGAN 3 and SPADE-GAN, trained on multiple medical imaging datasets with variable sample sizes.
arXiv Detail & Related papers (2024-10-23T15:28:25Z) - Evaluating Utility of Memory Efficient Medical Image Generation: A Study on Lung Nodule Segmentation [0.0]
This work proposes a memory-efficient patch-wise denoising diffusion probabilistic model (DDPM) for generating synthetic medical images.
Our approach generates high-utility synthetic images with nodule segmentation while efficiently managing memory constraints.
We evaluate the method in two scenarios: training a segmentation model exclusively on synthetic data, and augmenting real-world training data with synthetic images.
arXiv Detail & Related papers (2024-10-16T13:20:57Z) - A Domain Translation Framework with an Adversarial Denoising Diffusion
Model to Generate Synthetic Datasets of Echocardiography Images [0.5999777817331317]
We introduce a framework to create echocardiography images suitable to be used for clinical research purposes.
For several domain translation operations, the results verified that such generative model was able to synthesize high quality image samples.
arXiv Detail & Related papers (2024-03-07T15:58:03Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
We leverage recent advancements in neural rendering to improve static and dynamic novelview UAV-based image rendering.
We demonstrate a considerable performance boost when a state-of-the-art detection model is optimized primarily on hybrid sets of real and synthetic data.
arXiv Detail & Related papers (2023-10-25T00:20:37Z) - EMIT-Diff: Enhancing Medical Image Segmentation via Text-Guided
Diffusion Model [4.057796755073023]
We develop controllable diffusion models for medical image synthesis, called EMIT-Diff.
We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
In our approach, we ensure that the synthesized samples adhere to medically relevant constraints.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Augmenting medical image classifiers with synthetic data from latent
diffusion models [12.077733447347592]
We show that latent diffusion models can scalably generate images of skin disease.
We generate and analyze a new dataset of 458,920 synthetic images produced using several generation strategies.
arXiv Detail & Related papers (2023-08-23T22:34:49Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.