MediSyn: A Generalist Text-Guided Latent Diffusion Model For Diverse Medical Image Synthesis
- URL: http://arxiv.org/abs/2405.09806v4
- Date: Mon, 10 Feb 2025 20:00:24 GMT
- Title: MediSyn: A Generalist Text-Guided Latent Diffusion Model For Diverse Medical Image Synthesis
- Authors: Joseph Cho, Mrudang Mathur, Cyril Zakka, Dhamanpreet Kaur, Matthew Leipzig, Alex Dalal, Aravind Krishnan, Eubee Koo, Karen Wai, Cindy S. Zhao, Rohan Shad, Robyn Fong, Ross Wightman, Akshay Chaudhari, William Hiesinger,
- Abstract summary: MediSyn is a text-guided latent diffusion model capable of generating synthetic images from 6 medical specialties and 10 image types.
A direct comparison of the synthetic images against the real images confirms that our model synthesizes novel images and, crucially, may preserve patient privacy.
Our findings highlight the immense potential for generalist image generative models to accelerate algorithmic research and development in medicine.
- Score: 4.541407789437896
- License:
- Abstract: Deep learning algorithms require extensive data to achieve robust performance. However, data availability is often restricted in the medical domain due to patient privacy concerns. Synthetic data presents a possible solution to these challenges. Recently, image generative models have found increasing use for medical applications but are often designed for singular medical specialties and imaging modalities, thus limiting their broader utility. To address this, we introduce MediSyn: a text-guided, latent diffusion model capable of generating synthetic images from 6 medical specialties and 10 image types. The synthetic images are validated by expert clinicians for alignment with their corresponding text prompts. Furthermore, a direct comparison of the synthetic images against the real images confirms that our model synthesizes novel images and, crucially, may preserve patient privacy. Finally, classifiers trained on a mixture of synthetic and real data achieve similar performance to those trained on twice the amount of real data. Our findings highlight the immense potential for generalist image generative models to accelerate algorithmic research and development in medicine.
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Vision-Language Synthetic Data Enhances Echocardiography Downstream Tasks [4.1942958779358674]
This paper utilizes recent vision-language models to produce diverse and realistic synthetic echocardiography image data.
We show that the rich contextual information present in the synthesized data potentially enhances the accuracy and interpretability of downstream tasks.
arXiv Detail & Related papers (2024-03-28T23:26:45Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model [3.890243179348094]
Large-scale, big-variant, high-quality data are crucial for developing robust and successful deep-learning models for medical applications.
This paper proposes a novel approach by developing controllable diffusion models for medical image synthesis, called DiffBoost.
We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - Augmenting medical image classifiers with synthetic data from latent
diffusion models [12.077733447347592]
We show that latent diffusion models can scalably generate images of skin disease.
We generate and analyze a new dataset of 458,920 synthetic images produced using several generation strategies.
arXiv Detail & Related papers (2023-08-23T22:34:49Z) - Image Captions are Natural Prompts for Text-to-Image Models [70.30915140413383]
We analyze the relationship between the training effect of synthetic data and the synthetic data distribution induced by prompts.
We propose a simple yet effective method that prompts text-to-image generative models to synthesize more informative and diverse training data.
Our method significantly improves the performance of models trained on synthetic training data.
arXiv Detail & Related papers (2023-07-17T14:38:11Z) - Medical Diffusion -- Denoising Diffusion Probabilistic Models for 3D
Medical Image Generation [0.6486409713123691]
We show that diffusion probabilistic models can synthesize high quality medical imaging data.
We provide quantitative measurements of their performance through a reader study with two medical experts.
We demonstrate that synthetic images can be used in a self-supervised pre-training and improve the performance of breast segmentation models when data is scarce.
arXiv Detail & Related papers (2022-11-07T08:37:48Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Overcoming Barriers to Data Sharing with Medical Image Generation: A
Comprehensive Evaluation [17.983449515155414]
We utilize Generative Adversarial Networks (GANs) to create derived medical imaging datasets consisting entirely of synthetic patient data.
The synthetic images ideally have, in aggregate, similar statistical properties to those of a source dataset but do not contain sensitive personal information.
We measure the synthetic image quality by the performance difference of predictive models trained on either the synthetic or the real dataset.
arXiv Detail & Related papers (2020-11-29T15:41:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.