論文の概要: CLAIR: Evaluating Image Captions with Large Language Models
- arxiv url: http://arxiv.org/abs/2310.12971v1
- Date: Thu, 19 Oct 2023 17:59:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-20 13:32:17.913289
- Title: CLAIR: Evaluating Image Captions with Large Language Models
- Title(参考訳): CLAIR: 大きな言語モデルによる画像キャプションの評価
- Authors: David Chan, Suzanne Petryk, Joseph E. Gonzalez, Trevor Darrell, John
Canny
- Abstract要約: 本稿では,機械生成画像のキャプション評価手法であるCLAIRを提案する。
本評価では, CLAIRは, 従来の指標と比較して, キャプション品質の人的判断と強い相関性を示した。
Clairは、言語モデルが割り当てられたスコアの背後にある根底にある推論を識別できるようにすることで、ノイズに解釈可能な結果を提供する。
- 参考スコア(独自算出の注目度): 69.46906537973518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evaluation of machine-generated image captions poses an interesting yet
persistent challenge. Effective evaluation measures must consider numerous
dimensions of similarity, including semantic relevance, visual structure,
object interactions, caption diversity, and specificity. Existing
highly-engineered measures attempt to capture specific aspects, but fall short
in providing a holistic score that aligns closely with human judgments. Here,
we propose CLAIR, a novel method that leverages the zero-shot language modeling
capabilities of large language models (LLMs) to evaluate candidate captions. In
our evaluations, CLAIR demonstrates a stronger correlation with human judgments
of caption quality compared to existing measures. Notably, on Flickr8K-Expert,
CLAIR achieves relative correlation improvements over SPICE of 39.6% and over
image-augmented methods such as RefCLIP-S of 18.3%. Moreover, CLAIR provides
noisily interpretable results by allowing the language model to identify the
underlying reasoning behind its assigned score. Code is available at
https://davidmchan.github.io/clair/
- Abstract(参考訳): マシン生成画像キャプションの評価は、興味深いが永続的な課題である。
効果的な評価尺度は、意味的関連性、視覚構造、オブジェクト間相互作用、キャプションの多様性、特異性など、多くの類似性の次元を考慮する必要がある。
既存の高度に設計された尺度は、特定の側面を捉えようとするが、人間の判断と密接に一致する総合的なスコアを提供することには不足している。
本稿では,大規模言語モデル(LLM)のゼロショット言語モデリング機能を利用して,候補字幕の評価を行うCLAIRを提案する。
本評価では,既存の尺度と比較し,キャプション品質の人間判断との相関が強いことを示した。
特にFlickr8K-Expertでは、CLAIRはSPICEの39.6%、RefCLIP-Sの18.3%といった画像拡張手法よりも相対的な相関改善を実現している。
さらにCLAIRは、言語モデルが割り当てられたスコアの背後にある根底にある推論を識別できるようにすることで、ノイズに解釈可能な結果を提供する。
コードはhttps://davidmchan.github.io/clair/で入手できる。
関連論文リスト
- CLAIR-A: Leveraging Large Language Models to Judge Audio Captions [73.51087998971418]
機械生成オーディオキャプションの評価は、様々な要因を検討する必要がある複雑なタスクである。
本稿では,大規模言語モデルのゼロショット機能を活用するシンプルで柔軟なCLAIR-Aを提案する。
我々の評価では、CLAIR-Aは従来のメトリクスと比較して品質の人的判断を良く予測する。
論文 参考訳(メタデータ) (2024-09-19T17:59:52Z) - A Novel Evaluation Framework for Image2Text Generation [15.10524860121122]
本稿では,画像生成が可能な現代大規模言語モデル(LLM)に根ざした評価フレームワークを提案する。
高い類似度スコアは、画像キャプションモデルが正確にテキスト記述を生成することを示唆している。
類似度の低いスコアは相違点を示し、モデルの性能の潜在的な欠点を明らかにする。
論文 参考訳(メタデータ) (2024-08-03T09:27:57Z) - BRIDGE: Bridging Gaps in Image Captioning Evaluation with Stronger Visual Cues [47.213906345208315]
本稿では,新たな学習可能かつ参照不要な画像キャプション指標BRIDGEを提案する。
提案手法は,既存の基準フリー評価スコアと比較して,最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-07-29T18:00:17Z) - HICEScore: A Hierarchical Metric for Image Captioning Evaluation [10.88292081473071]
階層的画像キャプション評価スコア(HICE-S)と呼ばれる,画像キャプション評価のための新しい基準フリーメトリクスを提案する。
HICE-Sは、局所的な視覚領域とテキストのフレーズを検出することにより、解釈可能な階層的スコアリング機構を構築する。
提案手法は,複数のベンチマークでSOTA性能を達成し,既存の基準フリー指標よりも優れていた。
論文 参考訳(メタデータ) (2024-07-26T08:24:30Z) - Cobra Effect in Reference-Free Image Captioning Metrics [58.438648377314436]
視覚言語事前学習モデル(VLM)を活用した参照フリー手法の普及が出現している。
本稿では,基準自由度に欠陥があるかどうかを考察する。
GPT-4Vは生成した文を評価するための評価ツールであり,提案手法がSOTA(State-of-the-art)の性能を達成することを示す。
論文 参考訳(メタデータ) (2024-02-18T12:36:23Z) - SILC: Improving Vision Language Pretraining with Self-Distillation [113.50400246862056]
本稿では,視覚言語事前学習のための新しいフレームワークであるSILCを紹介する。
SILCは、局所-言語対応学習を自己蒸留で簡単に追加することで、画像テキストのコントラスト学習を改善する。
指数移動平均(EMA)教師モデルから局所像の特徴を抽出することにより,検出やセグメンテーションといった密集した予測タスクにおけるモデル性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-20T08:44:47Z) - Positive-Augmented Contrastive Learning for Image and Video Captioning
Evaluation [47.40949434032489]
画像キャプションのための新しいコントラストベース評価指標,すなわち肯定的拡張コントラスト学習スコア(PAC-S)を提案する。
PAC-Sは、生成した画像とキュレートされたデータにテキストを追加することで、対照的な視覚的意味空間の学習を統一する。
複数のデータセットにまたがる実験により、私たちの新しい測定基準は、画像とビデオの両方で人間の判断と最も高い相関を達成できることが示された。
論文 参考訳(メタデータ) (2023-03-21T18:03:14Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
ゼロショット方式で画像の品質知覚(ルック)と抽象知覚(フィール)の両方を評価するために,コントラスト言語-画像事前学習(CLIP)モデルを導入する。
以上の結果から,CLIPは知覚的評価によく適合する有意義な先行情報を捉えることが示唆された。
論文 参考訳(メタデータ) (2022-07-25T17:58:16Z) - Intrinsic Image Captioning Evaluation [53.51379676690971]
I2CE(Intrinsic Image Captioning Evaluation)と呼ばれる画像キャプションのための学習ベースメトリクスを提案する。
実験の結果,提案手法は頑健な性能を維持し,意味的類似表現やアライメントの少ない意味論に遭遇した場合,候補キャプションに対してより柔軟なスコアを与えることができた。
論文 参考訳(メタデータ) (2020-12-14T08:36:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。