論文の概要: BRIDGE: Bridging Gaps in Image Captioning Evaluation with Stronger Visual Cues
- arxiv url: http://arxiv.org/abs/2407.20341v1
- Date: Mon, 29 Jul 2024 18:00:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 19:08:17.739639
- Title: BRIDGE: Bridging Gaps in Image Captioning Evaluation with Stronger Visual Cues
- Title(参考訳): BRIDGE:より強力なビジュアルクイズによる画像キャプション評価におけるギャップを埋める
- Authors: Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara,
- Abstract要約: 本稿では,新たな学習可能かつ参照不要な画像キャプション指標BRIDGEを提案する。
提案手法は,既存の基準フリー評価スコアと比較して,最先端の結果が得られる。
- 参考スコア(独自算出の注目度): 47.213906345208315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effectively aligning with human judgment when evaluating machine-generated image captions represents a complex yet intriguing challenge. Existing evaluation metrics like CIDEr or CLIP-Score fall short in this regard as they do not take into account the corresponding image or lack the capability of encoding fine-grained details and penalizing hallucinations. To overcome these issues, in this paper, we propose BRIDGE, a new learnable and reference-free image captioning metric that employs a novel module to map visual features into dense vectors and integrates them into multi-modal pseudo-captions which are built during the evaluation process. This approach results in a multimodal metric that properly incorporates information from the input image without relying on reference captions, bridging the gap between human judgment and machine-generated image captions. Experiments spanning several datasets demonstrate that our proposal achieves state-of-the-art results compared to existing reference-free evaluation scores. Our source code and trained models are publicly available at: https://github.com/aimagelab/bridge-score.
- Abstract(参考訳): 機械生成画像キャプションの評価において、人間の判断と効果的に一致させることは、複雑だが興味深い課題である。
CIDErやCLIP-Scoreのような既存の評価指標は、対応するイメージを考慮していないか、細かい詳細をエンコードしたり幻覚を罰する能力が欠けているため、この点では不足している。
本稿では,視覚的特徴を高密度ベクトルにマッピングし,評価プロセス中に構築されたマルチモーダル擬似キャプションに統合する新しいモジュールを用いた,学習可能で参照不要な画像キャプションメトリックBRIDGEを提案する。
このアプローチにより,入力画像からの情報を参照キャプションに頼らずに適切に組み込んだマルチモーダルメトリックが実現され,人間の判断と機械生成画像キャプションのギャップを埋める。
いくつかのデータセットにまたがる実験により,提案手法は既存の基準のない評価結果と比較して最先端の結果が得られることが示された。
私たちのソースコードとトレーニングされたモデルは、https://github.com/aimagelab/bridge-score.comで公開されています。
関連論文リスト
- A Novel Evaluation Framework for Image2Text Generation [15.10524860121122]
本稿では,画像生成が可能な現代大規模言語モデル(LLM)に根ざした評価フレームワークを提案する。
高い類似度スコアは、画像キャプションモデルが正確にテキスト記述を生成することを示唆している。
類似度の低いスコアは相違点を示し、モデルの性能の潜在的な欠点を明らかにする。
論文 参考訳(メタデータ) (2024-08-03T09:27:57Z) - HICEScore: A Hierarchical Metric for Image Captioning Evaluation [10.88292081473071]
階層的画像キャプション評価スコア(HICE-S)と呼ばれる,画像キャプション評価のための新しい基準フリーメトリクスを提案する。
HICE-Sは、局所的な視覚領域とテキストのフレーズを検出することにより、解釈可能な階層的スコアリング機構を構築する。
提案手法は,複数のベンチマークでSOTA性能を達成し,既存の基準フリー指標よりも優れていた。
論文 参考訳(メタデータ) (2024-07-26T08:24:30Z) - Cobra Effect in Reference-Free Image Captioning Metrics [58.438648377314436]
視覚言語事前学習モデル(VLM)を活用した参照フリー手法の普及が出現している。
本稿では,基準自由度に欠陥があるかどうかを考察する。
GPT-4Vは生成した文を評価するための評価ツールであり,提案手法がSOTA(State-of-the-art)の性能を達成することを示す。
論文 参考訳(メタデータ) (2024-02-18T12:36:23Z) - Positive-Augmented Contrastive Learning for Image and Video Captioning
Evaluation [47.40949434032489]
画像キャプションのための新しいコントラストベース評価指標,すなわち肯定的拡張コントラスト学習スコア(PAC-S)を提案する。
PAC-Sは、生成した画像とキュレートされたデータにテキストを追加することで、対照的な視覚的意味空間の学習を統一する。
複数のデータセットにまたがる実験により、私たちの新しい測定基準は、画像とビデオの両方で人間の判断と最も高い相関を達成できることが示された。
論文 参考訳(メタデータ) (2023-03-21T18:03:14Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
ゼロショット方式で画像の品質知覚(ルック)と抽象知覚(フィール)の両方を評価するために,コントラスト言語-画像事前学習(CLIP)モデルを導入する。
以上の結果から,CLIPは知覚的評価によく適合する有意義な先行情報を捉えることが示唆された。
論文 参考訳(メタデータ) (2022-07-25T17:58:16Z) - Contrastive Semantic Similarity Learning for Image Captioning Evaluation
with Intrinsic Auto-encoder [52.42057181754076]
自動エンコーダ機構とコントラスト表現学習の進歩により,画像キャプションのための学習基準を提案する。
文レベルの表現を学習するための3つのプログレッシブモデル構造を開発する。
実験結果から,提案手法は他の指標から得られるスコアとよく一致できることが示唆された。
論文 参考訳(メタデータ) (2021-06-29T12:27:05Z) - Intrinsic Image Captioning Evaluation [53.51379676690971]
I2CE(Intrinsic Image Captioning Evaluation)と呼ばれる画像キャプションのための学習ベースメトリクスを提案する。
実験の結果,提案手法は頑健な性能を維持し,意味的類似表現やアライメントの少ない意味論に遭遇した場合,候補キャプションに対してより柔軟なスコアを与えることができた。
論文 参考訳(メタデータ) (2020-12-14T08:36:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。