Getting aligned on representational alignment
- URL: http://arxiv.org/abs/2310.13018v2
- Date: Thu, 2 Nov 2023 17:49:18 GMT
- Title: Getting aligned on representational alignment
- Authors: Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng,
Andreea Bobu, Been Kim, Bradley C. Love, Erin Grant, Iris Groen, Jascha
Achterberg, Joshua B. Tenenbaum, Katherine M. Collins, Katherine L. Hermann,
Kerem Oktar, Klaus Greff, Martin N. Hebart, Nori Jacoby, Qiuyi Zhang, Raja
Marjieh, Robert Geirhos, Sherol Chen, Simon Kornblith, Sunayana Rane, Talia
Konkle, Thomas P. O'Connell, Thomas Unterthiner, Andrew K. Lampinen,
Klaus-Robert M\"uller, Mariya Toneva, Thomas L. Griffiths
- Abstract summary: We study the study of representational alignment in cognitive science, neuroscience, and machine learning.
There is limited knowledge transfer between research communities interested in representational alignment.
We propose a unifying framework that can serve as a common language between researchers studying representational alignment.
- Score: 89.81370730647467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biological and artificial information processing systems form representations
that they can use to categorize, reason, plan, navigate, and make decisions.
How can we measure the extent to which the representations formed by these
diverse systems agree? Do similarities in representations then translate into
similar behavior? How can a system's representations be modified to better
match those of another system? These questions pertaining to the study of
representational alignment are at the heart of some of the most active research
areas in cognitive science, neuroscience, and machine learning. For example,
cognitive scientists measure the representational alignment of multiple
individuals to identify shared cognitive priors, neuroscientists align fMRI
responses from multiple individuals into a shared representational space for
group-level analyses, and ML researchers distill knowledge from teacher models
into student models by increasing their alignment. Unfortunately, there is
limited knowledge transfer between research communities interested in
representational alignment, so progress in one field often ends up being
rediscovered independently in another. Thus, greater cross-field communication
would be advantageous. To improve communication between these fields, we
propose a unifying framework that can serve as a common language between
researchers studying representational alignment. We survey the literature from
all three fields and demonstrate how prior work fits into this framework.
Finally, we lay out open problems in representational alignment where progress
can benefit all three of these fields. We hope that our work can catalyze
cross-disciplinary collaboration and accelerate progress for all communities
studying and developing information processing systems. We note that this is a
working paper and encourage readers to reach out with their suggestions for
future revisions.
Related papers
- Argumentation and Machine Learning [4.064849471241967]
This chapter provides an overview of research works that present approaches with some degree of cross-fertilisation between Computational Argumentation and Machine Learning.
Two broad themes representing the purpose of the interaction between these two areas were identified.
We evaluate the spectrum of works across various dimensions, including the type of learning and the form of argumentation framework used.
arXiv Detail & Related papers (2024-10-31T08:19:58Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
We study the relationship between cross-domain learning (CD) and model fairness.
We introduce a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks.
Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter.
arXiv Detail & Related papers (2023-03-25T09:34:05Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
We propose a new method for exploring the social biases in Text-to-Image (TTI) systems.
Our approach relies on characterizing the variation in generated images triggered by enumerating gender and ethnicity markers in the prompts.
We leverage this method to analyze images generated by 3 popular TTI systems and find that while all of their outputs show correlations with US labor demographics, they also consistently under-represent marginalized identities to different extents.
arXiv Detail & Related papers (2023-03-20T19:32:49Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
multimodal machine learning that incorporates data from various sources has become an increasingly popular research area.
We analyze the commonness and uniqueness of each data format mainly ranging from vision, audio, text, and motions.
We investigate the existing literature on multimodal learning from both the representation learning and downstream application levels.
arXiv Detail & Related papers (2022-10-05T13:14:57Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Empathetic Conversational Systems: A Review of Current Advances, Gaps,
and Opportunities [2.741266294612776]
A growing number of studies have recognized the benefits of empathy and started to incorporate empathy in conversational systems.
This paper examines this rapidly growing field using five review dimensions.
arXiv Detail & Related papers (2022-05-09T05:19:48Z) - Learning to Improve Representations by Communicating About Perspectives [0.0]
We present aminimal architecture comprised of a population of autoencoders.
We show that our proposed architectureallows the emergence of aligned representations.
Results demonstrate how communication from subjective perspec-tives can lead to the acquisition of more abstract representations in multi-agent systems.
arXiv Detail & Related papers (2021-09-20T09:30:13Z) - Evaluating the state-of-the-art in mapping research spaces: a Brazilian
case study [0.0]
Two recent works propose methods for creating research maps from scientists' publication records.
We evaluate these models' ability to predict whether a given entity will enter a new field.
We conduct a case study to showcase how these models can be used to characterize science dynamics in the context of Brazil.
arXiv Detail & Related papers (2021-04-07T18:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.